Strange kinetics of bulk-mediated diffusion on lipid bilayers.
نویسندگان
چکیده
Diffusion at solid-liquid interfaces is crucial in many technological and biophysical processes. Although its behavior seems to be deceivingly simple, recent studies showing passive superdiffusive transport suggest that diffusion on surfaces may hide rich complexities. In particular, bulk-mediated diffusion occurs when molecules are transiently released from the surface to perform three-dimensional excursions into the liquid bulk. This phenomenon bears the dichotomy where a molecule always return to the surface but the mean jump length is infinite. Such behavior is associated with a breakdown of the central limit theorem and weak ergodicity breaking. Here, we use single-particle tracking to study the statistics of bulk-mediated diffusion on a supported lipid bilayer. We find that the time-averaged mean square displacement (MSD) of individual trajectories, the archetypal measure in diffusion processes, does not converge to the ensemble MSD but it remains a random variable, even in the long observation-time limit. The distribution of time averages is shown to agree with a Lévy flight model. Our results also unravel intriguing anomalies in the statistics of displacements. The time-averaged MSD is shown to depend on experimental time and investigations of fractional moments show a scaling 〈|r(t)|(q)〉∼t(qν(q)) with non-linear exponents, i.e. ν(q) ≠ const. This type of behavior is termed strong anomalous diffusion and is rare among experimental observations.
منابع مشابه
A Kinetic Investigation of a Carrier-Mediated Transport through a Bulk Liquid Membrane
The kinetics of the potassium thiocyanate transport mediated by dicyclohexyl-18-crown-6 (L) through a bulk liquid membrane is studied experimentally and theoretically. The proposed model is based on the assumption of a pure diffusion of the complex salt [K·L]+SCN¯ through the liquid membrane stagnant films at the interfaces. It illustrates the ...
متن کاملKinetics of DNA-mediated docking reactions between vesicles tethered to supported lipid bilayers.
Membrane-membrane recognition and binding are crucial in many biological processes. We report an approach to studying the dynamics of such reactions by using DNA-tethered vesicles as a general scaffold for displaying membrane components. This system was used to characterize the docking reaction between two populations of tethered vesicles that display complementary DNA. Deposition of vesicles o...
متن کاملA phenomenological model of the solvent-assisted lipid bilayer formation method.
The recently introduced solvent-assisted lipid bilayer (SALB) formation method allows one to efficiently fabricate planar, lipid bilayers on solid supports and can be used for various applications. It involves the introduction of an aqueous buffer into a mixture of lipid and alcohol, which is incubated on a solid support. The associated phase changes in the ternary bulk system are accompanied b...
متن کاملSuperdiffusive motion of membrane-targeting C2 domains.
Membrane-targeting domains play crucial roles in the recruitment of signalling molecules to the plasma membrane. For most peripheral proteins, the protein-to-membrane interaction is transient. After proteins dissociate from the membrane they have been observed to rebind following brief excursions in the bulk solution. Such membrane hops can have broad implications for the efficiency of reaction...
متن کاملAgonist mobility in supported bilayers affects Fas mediated death response
Introduction Extrinsic apoptosis is initiated by the heterologous binding and clustering of the single-pass transmembrane proteins, Fas ligand, expressed by natural killer lymphocytes, and its cognate receptor Fas (CD95) expressed at the surface of a target cell. While the Fas mediated death response was widely studied using soluble inducers, the mobility constraints of both receptor and ligand...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 18 شماره
صفحات -
تاریخ انتشار 2016