Design Concepts and Preclinical Results of a Miniaturized HeartWare Platform
نویسندگان
چکیده
OBJECTIVE Ventricular assist device (VAD) miniaturization is one design trend that may result in less-invasive implantation techniques and more versatility with patient selection. The MVAD System is a miniature, continuous-flow device implanted in the ventricle. The pump is capable of delivering between 0 and 7 L/min of flow at a mean arterial pressure of 75 mm Hg. The impeller was optimized from its original design to improve hydraulic performance, minimize shear regions, and enhance the impeller's radial stiffness. These studies evaluated the MVAD System with modified impeller in the preclinical setting. METHODS This modified pump design was tested through chronic studies (n = 6) in a healthy ovine model where 4 animals were implanted for a duration of 30 ± 5 days and 2 animals were implanted for a duration of 90 ± 5 days. The pump was placed in the left ventricular apex with the outflow graft anastomosed to the descending aorta. Postoperatively, no anticoagulant or antiplatelet therapies were administered throughout the study duration. RESULTS All 6 animals reached their elective date of kill, demonstrating no evidence of organ compromise or device-related complications. Average pump parameters did not deviate significantly, and average rotational speed, pump flow, and power consumption were 14095 ± 139 RPM, 4.1 ± 0.4 L/min, and 4.3 ± 0.1 W, respectively. Examination of pump components postexplant demonstrated no mechanical wear or thrombus formation. CONCLUSIONS Hemocompatibility and biocompatibility of the modified MVAD System were demonstrated through pump parameters, blood chemistry panels, and histopathology analysis.
منابع مشابه
A Study of the Linear Electromagnetic Generator for Harvesting Electrical Energy from Initial Acceleration: Design, Optimization, and Experimental Validation
One of the important requirements in projectiles is to design a power supply for fuse consumption. In this study, an optimum design for the power supply, which includes a Miniaturized Inertia Generator (MIG), was introduced. The main objective of this research was to optimize the dimensions of the MIG with the aim of increasing energy. To achieve this, the design of experiment (DOE) was carried...
متن کاملComparison of left ventricular geometry after HeartMate II and HeartWare left ventricular assist device implantation
BACKGROUND HeartMate II (HM II) and HeartWare (HW) Left Ventricular Assist Devices have been successfully used in end-stage heart failure patients as a bridge to transplantation, recovery, or decision. We set out to compare their effect in off-loading the left ventricle and its geometry. METHODS The left ventricular end diastolic (LVEDD) and end systolic (LVESD) diameters were compared betwee...
متن کاملDesign and Construction of a New Capacitive Tactile Sensor for Measuring Normal Tactile Force
This paper presents the design, construction and testing of a new capacitive tactile sensor for measurement of normal tactile force. The operation of proposed sensor has been investigated in ASTABLE and MONOSTABLE circuits. According to the results of these circuits the deviation of ASTABLE circuit results is less than MONOSTABLE circuit results. In addition, the results obtained from ASTABLE c...
متن کاملThe Smart-Its Platform for Embedded Context- Aware Systems
We present the Smart-its platform, a tool for embedded context aware systems. Smart-its are an ideal development tool for evaluating concepts and ideas that require embedded sensing and wireless communication solutions. Two complementary platforms are described. The Lancaster DIY Smart-its platform was specifically designed for rapid prototyping affording easy hardware and software customizatio...
متن کاملA New Design of Log-Periodic Dipole Array (LPDA) Antenna
This paper presents a new approach for design of the log-periodic dipole array antenna (LPDA) based on using of different design parameters in the LPDA elements to control the antenna behavior. In the proposed procedure, the design parameters can control the value of forward gain over the operating frequency range, and also adjust the gain flatness. Furthermore, this design procedure can decrea...
متن کامل