Pollen-specific genes accumulate more deleterious mutations than sporophytic genes under relaxed purifying selection in Arabidopsis thaliana
نویسندگان
چکیده
The strength of purifying selection varies among loci and leads to differing frequencies of deleterious alleles within genomes. Selection is generally stronger for highly and broadly expressed genes but can be less efficient for diploid expressed, deleterious alleles if heterozygous. In plants expression level, tissue specificity and ploidy level differ between pollen specific and sporophyte specific genes. This may explain why the reported strength and direction of the relationship between selection and the specificity of a gene to either pollen or sporophytic tissues varies between studies and species. In this study, we investigate the individual effects of expression level and tissue specificity on selection efficacy within pollen genes and sporophytic genes of Arabidopsis thaliana. Due to high homozygosity levels caused by selfing, masking is expected to play a lesser role. We find that expression level and tissue specificity independently influence selection in A. thaliana. Furthermore, contrary to expectations, pollen genes are evolving faster due to relaxed purifying selection and have accumulated a higher frequency of deleterious alleles. This suggests that high homozygosity levels resulting from high selfing rates reduce the effects of pollen competition and masking in A. thaliana, so that the high tissue specificity and expression noise of pollen genes are leading to lower selection efficacy compared to sporophyte genes. . CC-BY-NC 4.0 International license not peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/016626 doi: bioRxiv preprint first posted online Mar. 17, 2015;
منابع مشابه
Deleterious mutation accumulation in Arabidopsis thaliana pollen genes: a role for a recent relaxation of selection
As with reproductive genes generally, we expect a faster evolution of plant pollen genes compared to sporophytic genes. Haploid expression in pollen leads to advantageous and deleterious alleles not being masked by a dominant homologue. A combination of haploid expression and pollen competition have been suggested as being responsible for stronger purifying and positive selection on pollen gene...
متن کاملPollen-specific, but not sperm-specific, genes show stronger purifying selection and higher rates of positive selection than sporophytic genes in Capsella grandiflora.
Selection on the gametophyte can be a major force shaping plant genomes as 7-11% of genes are expressed only in that phase and 60% of genes are expressed in both the gametophytic and sporophytic phases. The efficacy of selection on gametophytic tissues is likely to be influenced by sexual selection acting on male and female functions of hermaphroditic plants. Moreover, the haploid nature of the...
متن کاملA population genomics study of the Arabidopsis core cell cycle genes shows the signature of natural selection.
Large-scale comparison of sequence polymorphism and divergence at numerous genomic loci within and between closely related species can reveal signatures of natural selection. Here, we present a population genomics study based on direct sequencing of 61 mitotic cell cycle genes from 30 Arabidopsis thaliana accessions and comparison of the resulting data to the close relative Arabidopsis lyrata. ...
متن کاملThe sheltered genetic load linked to the s locus in plants: new insights from theoretical and empirical approaches in sporophytic self-incompatibility.
Inbreeding depression and mating systems evolution are closely linked, because the purging of deleterious mutations and the fitness of individuals may depend on outcrossing vs. selfing rates. Further, the accumulation of deleterious mutations may vary among genomic regions, especially for genes closely linked to loci under balancing selection. Sporophytic self-incompatibility (SSI) is a common ...
متن کاملRelaxed Purifying Selection and Possibly High Rate of Adaptation in Primate Lineage-Specific Genes
Genes in the same organism vary in the time since their evolutionary origin. Without horizontal gene transfer, young genes are necessarily restricted to a few closely related species, whereas old genes can be broadly distributed across the phylogeny. It has been shown that young genes evolve faster than old genes; however, the evolutionary forces responsible for this pattern remain obscure. Her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015