Quantum-Mechanical Methods for Quantifying Incorporation of Contaminants in Proximal Minerals

نویسندگان

  • Lindsay C. Shuller-Nickles
  • Will M. Bender
  • Sarah M. Walker
  • Udo Becker
چکیده

Incorporation reactions play an important role in dictating immobilization and release pathways for chemical species in low-temperature geologic environments. Quantum-mechanical investigations of incorporation seek to characterize the stability and geometry of incorporated structures, as well as the thermodynamics and kinetics of the reactions themselves. For a thermodynamic treatment of incorporation reactions, a source of the incorporated ion and a sink for the released ion is necessary. These sources/sinks in a real geochemical system can be solids, but more commonly, they are charged aqueous species. In this contribution, we review the current methods for ab initio calculations of incorporation reactions, many of which do not consider incorporation from aqueous species. We detail a recently-developed approach for the calculation of incorporation reactions and expand on the part that is modeling the interaction of periodic solids with aqueous source and sink phases and present new research using this approach. To model these interactions, a systematic series of calculations must be done to transform periodic solid source and sink phases to aqueous-phase clusters. Examples of this process are provided for three case studies: (1) neptunyl incorporation into studtite and boltwoodite: for the layered boltwoodite, the incorporation energies are smaller (more favorable) for reactions using environmentally relevant source and sink phases (i.e., ΔErxn(oxides) > ΔErxn(silicates) > ΔErxn(aqueous)). Estimates of the solid-solution behavior of Np/Pand U/Si-boltwoodite and Np/Caand U/K-boltwoodite solid solutions are used OPEN ACCESS Minerals 2014, 4 691 to predict the limit of Np-incorporation into boltwoodite (172 and 768 ppm at 300 °C, respectively); (2) uranyl and neptunyl incorporation into carbonates and sulfates: for both carbonates and sulfates, it was found that actinyl incorporation into a defect site is more favorable than incorporation into defect-free periodic structures. In addition, actinyl incorporation into carbonates with aragonite structure is more favorable than into carbonates with calcite structure; and (3) uranium incorporation into magnetite: within the configurations tested that preserve charge neutrality (U → 2Feoct/tet or U → Feoct), uranium incorporation into magnetite is most favorable when U replaces octahedral Fe with charge balancing accomplished by an octahedral Fe iron vacancy. At the end of this article, the limitations of this method and important sources of error inherent in these calculations (e.g., hydration energies) are discussed. Overall, this method and examples may serve as a guide for future studies of incorporation in a variety of contexts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas contaminants capturing by gamma-carbonic anhydrase catalyst: A quantum chemical approach

In this paper, we used quantum chemical approach to shed light on the catalytic mechanism of γ-carbonic anhydrase (γ-CA) to convert carbon dioxide to bicarbonate ion. Density functional theory (DFT) using B3LYP and UB3LYP functional and three split-valance including 6-31G*, 6-311G** and 6-311++G** basis sets were used to calculate the details of electronic structure and electronic energy of act...

متن کامل

Gas contaminants capturing by gamma-carbonic anhydrase catalyst: A quantum chemical approach

In this paper, we used quantum chemical approach to shed light on the catalytic mechanism of γ-carbonic anhydrase (γ-CA) to convert carbon dioxide to bicarbonate ion. Density functional theory (DFT) using B3LYP and UB3LYP functional and three split-valance including 6-31G*, 6-311G** and 6-311++G** basis sets were used to calculate the details of electronic structure and electronic energy of act...

متن کامل

Ab initio theory of phase transitions and thermoelasticity of minerals

Accurate quantum-mechanical simulations have significantly extended the current picture of the Earth and hold a great promise for the future of the Earth and planetary sciences. Studies of phase transitions, equations of state, elasticity and thermoelastic properties of the Earth-forming minerals are essential to geophysics. This chapter gives a basic background of the physics of the deep Earth...

متن کامل

The Quantum Statistical Mechanical Theory of Transport Processes

A new derivation of the quantum Boltzmann transport equation for the Fermion system from the quantum time evolution equation for the wigner distribution function is presented. The method exhibits the origin of the time - irreversibility of the Boltzmann equation. In the present work, the spin dependent and indistinguishibility of particles are also considered.

متن کامل

Quantum mechanical methods for enzyme kinetics.

This review discusses methods for the incorporation of quantum mechanical effects into enzyme kinetics simulations in which the enzyme is an explicit part of the model. We emphasize three aspects: (a) use of quantum mechanical electronic structure methods such as molecular orbital theory and density functional theory, usually in conjunction with molecular mechanics; (b) treating vibrational mot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014