Mini and Micro Propulsion for Medical Swimmers
نویسندگان
چکیده
Mini and micro robots, which can swim in an underwater environment, have drawn widespread research interests because of their potential applicability to the medical or biological fields, including delivery and transportation of bio-materials and drugs, bio-sensing, and bio-surgery. This paper reviews the recent ideas and developments of these types of self-propelling devices, ranging from the millimeter scale down to the micro and even the nano scale. Specifically, this review article makes an emphasis on various propulsion principles, including methods of utilizing smart actuators, external magnetic/electric/acoustic fields, bacteria, chemical reactions, etc. In addition, we compare the propelling speed range, directional control schemes, and advantages of the
منابع مشابه
Electro-osmotic propulsion of helical nanobelt swimmers
Micro and nanoscale mobile agents capable of self-propulsion in low Reynolds number fluids would have a great technological impact in many fields. Few known mechanisms are able to propel such devices. Here we describe helical nanobelt (HNB) swimmers actuated by an electric field-generated electro-osmotic force. These HNB swimmers are designed with a head and a tail, similar to natural micro-org...
متن کاملA study of self-propelled elastic cylindrical micro-swimmers using modeling and computation
We study propulsion of micro-swimmers in 3D creeping flow. The swimmers are assumed to be made of elastic cylindrical hollow tubes. The swimming is generated by the contractions of the tube’s elastic membrane walls producing a traveling wave in the form of a “step-function” traversing the swimmer from right to left, propelling the swimmer from left to right. The problem is motivated by medical ...
متن کامل“Breaking the symmetry: Designing colloidal motors and swimming at oil- water interfaces”
Breaking symmetry is at the very core of achieving propulsion at the microscale, where viscous forces dominate. Nature has perfected a range of different strategies to reach this goal for swimming microorganisms, which scientists have taken inspiration from to produce artificial micro-swimmers [1]. A common way to achieve propulsion at the colloidal scale is to produce artificial particles that...
متن کاملNumerical modelling of chirality-induced bi-directional swimming of artificial flagella.
Biomimetic micro-swimmers can be used for various medical applications, such as targeted drug delivery and micro-object (e.g. biological cells) manipulation, in lab-on-a-chip devices. Bacteria swim using a bundle of flagella (flexible hair-like structures) that form a rotating cork-screw of chiral shape. To mimic bacterial swimming, we employ a computational approach to design a bacterial (chir...
متن کاملA New Propulsion System for Microswimmer Robot and Optimizing Geometrical Parameters Using PSO Algorithm
Mini and micro robots, which can swim in an underwater environment, have drawn widespread research interests because of their potential applications to the clinical drug delivery, biotechnology, manufacturing, mobile sensor networks, etc. In this paper, a prototype of microrobot based on the motion principle of living microorganisms such as E. Coli Bacteria is presented. The properties of this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Micromachines
دوره 5 شماره
صفحات -
تاریخ انتشار 2014