Starch and Sucrose Synthesis in Phaseolus vulgaris as Affected by Light, CO(2), and Abscisic Acid.

نویسندگان

  • T D Sharkey
  • J A Berry
  • K Raschke
چکیده

Phaseolus vulgaris L. leaves were subjected to various light, CO(2), and O(2) levels and abscisic acid, then given a 10 minute pulse of (14)CO(2) followed by a 5 minute chase with unlabeled CO(2). After the chase period, very little label remained in the ionic fractions (presumed to be mostly carbon reduction and carbon oxidation cycle intermediates and amino acids) except at low CO(2) partial pressure. Most label was found in the neutral, alcohol soluble fraction (presumed sucrose) or in the insoluble fraction digestable by amyloglucosidase. Sucrose formation was linearly related to assimilation rate (slope = 0.35). Starch formation increased linearly with assimilation rate (slope = 0.56) but did not occur if the assimilation rate was below 4 micromoles per square meter per second. Neither abscisic acid, nor high CO(2) in combination with low O(2) (thought to disrupt control of carbon metabolism) caused significant perturbations of the sucrose/starch formation ratio. These studies indicate that the pathways for starch and sucrose synthesis both are controlled by the rate of net CO(2) assimilation, with sucrose the preferred product at very low assimilation rates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photosynthesis, Carbohydrate Metabolism, and Export in Beta vulgaris L. and Phaseolus vulgaris L. during Square and Sinusoidal Light Regimes.

Rates of photosynthesis, sucrose synthesis, starch accumulation and degradation were measured in sugar beet (Beta vulgaris L.) and bean (Phaseolus vulgaris L.) plants under a square-wave light regime and under a sinusoidal regime that simulated the natural daylight period. Photosynthesis rate increased in a measured manner in direct proportion to the increasing light level. In contrast to this ...

متن کامل

Abscisic Acid stimulates elongation of excised pea root tips.

Excised Pisum sativum L. root tips were incubated in a pH 5.2 sucrose medium containing abscisic acid. Elongation growth was inhibited by 100 mum abscisic acid. However, decreasing the abscisic acid concentration caused stimulation of elongation, the maximum response (25% to 30%) occurring at 1 mum abscisic acid. Prior to two hours, stimulation of elongation by 1 mum abscisic acid was not detec...

متن کامل

The role of P; recycling processes during photosynthesis in phosphate-deficient bean plants

Bean plants {Phaseolus vulgaris L. cv. Zlota Saxa) were grown on complete (control plants) and phosphatedeficient (low-P plants) culture solutions for 17 d. Phosphate deficiency markedly reduced leaf growth, but only slightly decreased the photosynthesis rate. The intensity of reactions releasing inorganic orthophosphate during photosynthesis was examined. In the leaves of low-P plants the pool...

متن کامل

In vivo respiratory metabolism of illuminated leaves.

Day respiration of illuminated C(3) leaves is not well understood and particularly, the metabolic origin of the day respiratory CO(2) production is poorly known. This issue was addressed in leaves of French bean (Phaseolus vulgaris) using (12)C/(13)C stable isotope techniques on illuminated leaves fed with (13)C-enriched glucose or pyruvate. The (13)CO(2) production in light was measured using ...

متن کامل

Abscisic Aldehyde Is an Intermediate in the Enzymatic Conversion of Xanthoxin to Abscisic Acid in Phaseolus vulgaris L. Leaves.

The enzymatic conversion of xanthoxin to abscisic acid by cell-free extracts of Phaseolus vulgaris L. leaves has been found to be a two-step reaction catalyzed by two different enzymes. Xanthoxin was first converted to abscisic aldehyde followed by conversion of the latter to abscisic acid. The enzyme activity catalyzing the synthesis of abscisic aldehyde from xanthoxin (xanthoxin oxidase) was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 77 3  شماره 

صفحات  -

تاریخ انتشار 1985