Biokinetic process model diagnosis with shape-constrained spline functions

نویسندگان

  • A. Maši
  • S. Srinivasan
  • J. Billeter
  • D. Bonvin
  • K. Villez
چکیده

Model-structure identification is important for the optimization and design of biokinetic processes. Standard Monod and Tessier functions are often used by default to describe bacterial growth with respect to a substrate, leading to significant optimization errors in case of inappropriate representation. This paper introduces shape-constrained spline (SCS) functions, which share the qualitative behavior of a number of conventional growth-rate functions expressing substrate affinity effects. A simulated case study demonstrates the capabilities in terms of model identification of SCS functions, which offer a high parametric flexibility and could replace incomplete libraries of functions by a single biokinetic model structure. Moreover, the diagnostic ability of the spline functions is illustrated for the case of Haldane kinetics, which exhibits a distinctively different shape. The major benefit of these spline functions lies in their model discrimination capabilities by indicating in a quick and conclusive way the presence of other effects than substrate affinity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Use of Shape-Constrained Splines for Biokinetic Process Modeling ?

Identification of mathematical models is an important task for the design and the optimization of biokinetic processes. Monod or Tessier growth-rate models are often chosen by default, although these models are not able to represent the dynamics of all bacterial growth processes. This imperfect representation then affects the quality of the model prediction. This paper introduces an alternative...

متن کامل

On the shape parameter and constrained modification of GB-spline curves

GB-spline curves can be considered as the generalization of B-spline curve incorporating a shape parameter into the polynomial basis functions. The geometric effect of the alteration of the shape parameter is discussed in this paper, including constrained shape control of the curve.

متن کامل

TENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE

In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...

متن کامل

An Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm

A new method is presented to deal with shape optimization problems. In this method, the geometry is parameterized by B-spline shape functions with the control points of the B-spline curves becoming the design variables in the optimization scheme. The core idea of the method presented is to introduce the knot insertion algorithm which can keep the geometry unchanged whilst increasing the number ...

متن کامل

A MIQCP formulation for B-spline constraints

This paper presents a mixed-integer quadratically constrained programming (MIQCP) formulation for B-spline constraints. The formulation can be used to obtain an exact MIQCP reformulation of any spline-constrained optimization problem. This reformulation allows practitioners to use a general-purpose MIQCP solver, instead of a special-purpose spline solver, when solving B-spline constrained probl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016