Phosphatidylinositol Phosphate 5-Kinase Iγ and Phosphoinositide 3-Kinase/Akt Signaling Couple to Promote Oncogenic Growth.
نویسندگان
چکیده
The assembly of signaling complexes at the plasma membrane is required for the initiation and propagation of cellular signaling upon cell activation. The class I PI3K and the serine/threonine-specific protein kinase Akt signaling pathways (PI3K/Akt) are often activated in tumors. These pathways are initiated by the generation of phosphatidylinositol 3,4,5-triphosphate (PIP3) by PI3K-mediated phosphorylation of phosphatidylinositol 4,5-biphosphate (PIP2), synthesized by phosphatidylinositol 4-phosphate 5-kinase (PIPKI) enzymes. The mechanism of how tumor cells recruit and organize the PIP2-synthesizing enzymes with PI3K in the plasma membrane for activation of PI3K/Akt signaling is not defined. Here, we demonstrated a role for the phosphatidylinositol 4-phosphate 5-kinase Iγ (PIPKIγ) in PI3K/Akt signaling. PIPKIγ is overexpressed in triple-negative breast cancers. Loss of PIPKIγ or its focal adhesion-targeting variant, PIPKIγi2, impaired PI3K/Akt activation upon stimulation with growth factors or extracellular matrix proteins in different tumor cells. PIPKIγi2 assembles into a complex containing Src and PI3K; Src was required for the recruitment of PI3K enzyme into the complex. PIPKIγi2 interaction with Src and its lipid kinase activity were required for promoting PI3K/Akt signaling. These results define a mechanism by which PIPKIγi2 and PI3K are integrated into a complex regulated by Src, resulting in the spatial generation of PIP2, which is the substrate PI3K required for PIP3 generation and subsequent Akt activation. This study elucidates the mechanism by which PIP2-generating enzyme controls Akt activation upstream of a PI3K enzyme. This pathway may represent a signaling nexus required for the survival and growth of metastasizing and circulating tumor cells in vivo.
منابع مشابه
Electroacupuncture attenuates chronic fibromyalgia pain through the phosphorylated phosphoinositide 3-kinase signaling pathway in the mouse brain
Objective(s): Fibromyalgia (FM) is a central nervous system disorder characterized by widespread mechanical hyperalgesia due to unknown mechanisms. Several inflammatory mediators, such as interleukin-1 (IL-1), IL-6, IL-8, and tumor necrosis factor, are increased in the serum of FM patients. Although medications including pregabalin, duloxetine, and milnacipran are used...
متن کاملThe inositol polyphosphate 5-phosphatase, PIPP, Is a novel regulator of phosphoinositide 3-kinase-dependent neurite elongation.
The spatial activation of phosphoinositide 3-kinase (PI3-kinase) signaling at the axon growth cone generates phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3), which localizes and facilitates Akt activation and stimulates GSK-3beta inactivation, promoting microtubule polymerization and axon elongation. However, the molecular mechanisms that govern the spatial down-regulation of PtdIns(...
متن کاملThe akt kinase: molecular determinants of oncogenicity.
The serine-threonine kinase Akt is a downstream target of phosphoinositide 3-kinase (PI 3-kinase); it is activated by the phosphoinositide 3-phosphate-dependent kinases PDK1 and PDK2. Certain mutated forms of Akt induce oncogenic transformation in chicken embryo fibroblast cultures and hemangiosarcomas in young chickens. This ability to transform cells depends on localization of Akt at the plas...
متن کاملCurcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway
Objective(s): The aim of this study was to investigate the effect of curcumin on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and its underlying potential mechanism.Materials and Methods: The tissue explant adherence method was used to isolate hPDLSCs. Flowcytometry, Alizarin Red staining and Oil Red ...
متن کاملRequirement of phosphatidylinositol(3,4,5)trisphosphate in phosphatidylinositol 3-kinase-induced oncogenic transformation.
Phosphatidylinositol 3-kinases (PI3K) are divided into three classes, which differ in their substrates and products. Class I generates the inositol phospholipids PI(3)P, PI(3,4)P2, and PI(3,4,5)P3 referred as PIP, PIP2, and PIP3, respectively. Class II produces PIP and PIP2, and class III generates only PIP. Substrate and product differences of the three classes are determined by the activation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 290 30 شماره
صفحات -
تاریخ انتشار 2015