A second order in time, decoupled, unconditionally stable numerical scheme for the Cahn-Hilliard-Darcy system

نویسندگان

  • Daozhi Han
  • Xiaoming Wang
چکیده

We propose a novel second order in time, decoupled and unconditionally stable numerical scheme for solving the Cahn-Hilliard-Darcy (CHD) system which models two-phase flow in porous medium or in a Hele-Shaw cell. The scheme is based on the ideas of second order convex-splitting for the Cahn-Hilliard equation and pressure-correction for the Darcy equation. We show that the scheme is uniquely solvable, unconditionally energy stable and mass-conservative. Ample numerical results are presented to gauge the efficiency and robustness of our scheme. Keywords— Cahn-Hilliard-Darcy; diffuse interface model; energy law; unconditional stability; pressure-correction; decoupling

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decoupled energy-law preserving numerical schemes for the Cahn-Hilliard-Darcy system

We study two novel decoupled energy-law preserving numerical schemes for solving the CahnHilliard-Darcy (CHD) system which models two-phase flow in porous medium or in a Hele-Shaw cell. In the first scheme, the velocity in the Cahn-Hilliard equation is treated explicitly so that the Darcy equation is completely decoupled from the Cahn-Hilliard equation. In the second scheme, an intermediate vel...

متن کامل

Uniquely solvable and energy stable decoupled numerical schemes for the Cahn-Hilliard-Stokes-Darcy system for two-phase flows in karstic geometry

We propose and analyze two novel decoupled numerical schemes for solving the Cahn-HilliardStokes-Darcy (CHSD) model for two-phase flows in karstic geometry. In the first numerical scheme, we explore a fractional step method (operator splitting) to decouple the phase-field (Cahn-Hilliard equation) from the velocity field (Stokes-Darcy fluid equations). To further decouple the Stokes-Darcy system...

متن کامل

A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation

We propose a novel second order in time numerical scheme for Cahn-Hilliard-NavierStokes phase field model with matched density. The scheme is based on second order convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navier-Stokes equation. We show that the scheme is mass-conservative, satisfies a modified energy law and is therefore unconditionally stable. Moreover, ...

متن کامل

Convergence analysis of a fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation

We present an error analysis for an unconditionally energy stable, fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation, a modified Cahn-Hilliard equation coupled with the Darcy flow law. The scheme, proposed in [47], is based on the idea of convex splitting. In this paper, we rigorously prove first order convergence in time and second order convergence in space. Ins...

متن کامل

Stability and Convergence of a Second Order Mixed Finite Element Method for the Cahn-Hilliard Equation

In this paper we devise and analyze an unconditionally stable, second-order-in-time numerical scheme for the Cahn-Hilliard equation in two and three space dimensions. We prove that our two-step scheme is unconditionally energy stable and unconditionally uniquely solvable. Furthermore, we show that the discrete phase variable is bounded in L∞ (0, T ;L∞) and the discrete chemical potential is bou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016