Motor output evoked by subsaccadic stimulation of primate frontal eye fields.

نویسندگان

  • Brian D Corneil
  • James K Elsley
  • Benjamin Nagy
  • Sharon L Cushing
چکیده

In addition to its role in shifting the line of sight, the oculomotor system is also involved in the covert orienting of visuospatial attention. Causal evidence supporting this premotor theory of attention, or oculomotor readiness hypothesis, comes from the effect of subsaccadic threshold stimulation of the oculomotor system on behavior and neural activity in the absence of evoked saccades, which parallels the effects of covert attention. Here, by recording neck-muscle activity from monkeys and systematically titrating the level of stimulation current delivered to the frontal eye fields (FEF), we show that such subsaccadic stimulation is not divorced from immediate motor output but instead evokes neck-muscle responses at latencies that approach the minimal conduction time to the motor periphery. On average, neck-muscle thresholds were approximately 25% lower than saccade thresholds, and this difference is larger for FEF sites associated with progressively larger saccades. Importantly, we commonly observed lower neck-muscle thresholds even at sites evoking saccades <or=5 degrees in magnitude, although such small saccades are not associated with head motion. Neck-muscle thresholds compare well with the current levels used in previous studies to influence behavior or neural activity through activation of FEF neurons feeding back to extrastriate cortex. Our results complement this previous work by suggesting that the neurobiologic substrate that covertly orients visuospatial attention shares this command with head premotor circuits in the brainstem, culminating with recruitment in the motor periphery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transient Pupil Dilation after Subsaccadic Microstimulation of Primate Frontal Eye Fields.

UNLABELLED Pupillometry provides a simple and noninvasive index for a variety of cognitive processes, including perception, attention, task consolidation, learning, and memory. The neural substrates by which such cognitive processes influence pupil diameter remain somewhat unclear, although cortical inputs to the locus coeruleus mediating arousal are likely involved. Changes in pupil diameter a...

متن کامل

Transcranial magnetic stimulation of the prefrontal cortex in awake nonhuman primates evokes a polysynaptic neck muscle response that reflects oculomotor activity at the time of stimulation.

Transcranial magnetic stimulation (TMS) has emerged as an important technique in cognitive neuroscience, permitting causal inferences about the contribution of a given brain area to behavior. Despite widespread use, exactly how TMS influences neural activity throughout an interconnected network, and how such influences ultimately change behavior, remain unclear. The oculomotor system of nonhuma...

متن کامل

Frames of reference for eye-head gaze shifts evoked during frontal eye field stimulation.

The frontal eye field (FEF), in the prefrontal cortex, participates in the transformation of visual signals into saccade motor commands and in eye-head gaze control. The FEF is thought to show eye-fixed visual codes in head-restrained monkeys, but it is not known how it transforms these inputs into spatial codes for head-unrestrained gaze commands. Here, we tested if the FEF influences desired ...

متن کامل

Jn-00386-r2 Widespread Pre-saccadic Recruitment of Neck Muscles by Stimulation of the Primate Frontal Eye Fields

We studied the role of the primate frontal eye fields (FEF) in eye-head gaze shifts by recording electromyographic (EMG) activity from multiple dorsal neck muscles following electrical stimulation of a broad distribution of sites throughout FEF. We assess our results in light of four mechanisms forwarded to account for why eye and head movements follow FEF stimulation. Two mechanisms propose th...

متن کامل

Widespread presaccadic recruitment of neck muscles by stimulation of the primate frontal eye fields.

We studied the role of the primate frontal eye fields (FEFs) in eye-head gaze shifts by recording EMG activity from multiple dorsal neck muscles after electrical stimulation of a broad distribution of sites throughout FEF. We assess our results in light of four mechanisms forwarded to account for why eye and head movements follow FEF stimulation. Two mechanisms propose that movements are genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 13  شماره 

صفحات  -

تاریخ انتشار 2010