Melanin-concentrating hormone directly inhibits GnRH neurons and blocks kisspeptin activation, linking energy balance to reproduction.

نویسندگان

  • Min Wu
  • Iryna Dumalska
  • Elena Morozova
  • Anthony van den Pol
  • Meenakshi Alreja
چکیده

A link between energy balance and reproduction is critical for the survival of all species. Energy-consuming reproductive processes need to be aborted in the face of a negative energy balance, yet knowledge of the pathways mediating this link remains limited. Fasting and food restriction that inhibit fertility also upregulate the hypothalamic melanin-concentrating hormone (MCH) system that promotes feeding and decreases energy expenditure; MCH knockout mice are lean and have a higher metabolism but remain fertile. MCH also modulates sleep, drug abuse behavior, and mood, and MCH receptor antagonists are currently being developed as antiobesity and antidepressant drugs. Despite the clinical implications of MCH, the direct postsynaptic effects of MCH have never been reported in CNS neurons. Using patch-clamp recordings in brain slices from multiple lines of transgenic GFP mice, we demonstrate a strong inhibitory effect of MCH on an exclusive population of septal vGluT2-GnRH neurons that is activated by the puberty-triggering and preovulatory luteinizing hormone surge-mediating peptide, kisspeptin. MCH has no effect on kisspeptin-insensitive GnRH, vGluT2, cholinergic, or GABAergic neurons located within the same nucleus. The inhibitory effects of MCH are reproducible and nondesensitizing and are mediated via a direct postsynaptic Ba(2+)-sensitive K(+) channel mechanism involving the MCHR1 receptor. MCH immunoreactive fibers are in close proximity to vGluT2-GFP and GnRH-GFP neurons. Importantly, MCH blocks the excitatory effect of kisspeptin on vGluT2-GnRH neurons. Considering the role of MCH in regulating energy balance and of GnRH and kisspeptin in triggering puberty and maintaining fertility, MCH may provide a critical link between energy balance and reproduction directly at the level of the kisspeptin-activated vGluT2-GnRH neuron.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Pathways Integrating Metabolism and Reproduction in Teleosts

Energy balance plays an important role in the control of reproduction. However, the cellular and molecular mechanisms connecting the two systems are not well understood especially in teleosts. The hypothalamus plays a crucial role in the regulation of both energy balance and reproduction, and contains a number of neuropeptides, including gonadotropin-releasing hormone (GnRH), orexin, neuropepti...

متن کامل

Kisspeptin and energy balance in reproduction.

Kisspeptin is vital for the neuroendocrine regulation of GNRH secretion. Kisspeptin neurons are now recognized as a central pathway responsible for conveying key homeostatic information to GNRH neurons. This pathway is likely to mediate the well-established link between energy balance and reproductive function. Thus, in states of severely altered energy balance (either negative or positive), fe...

متن کامل

Endogenous kisspeptin tone is a critical excitatory component of spontaneous GnRH activity and the GnRH response to NPY and CART.

BACKGROUND/AIMS Kisspeptin is the major excitatory regulator of gonadotropin-releasing hormone (GnRH) neurons and is responsible for basal GnRH/LH release and the GnRH/LH surge. Although it is widely assumed, based on mutations in kisspeptin and Kiss1R, that kisspeptin acts to sustain basal GnRH neuronal activity, there have been no studies to investigate whether endogenous basal kisspeptin ton...

متن کامل

Reproductive Neuroendocrine Pathways of Social Behavior

Social behaviors are key components of reproduction, because they are essential for successful fertilization. Social behaviors, such as courtship, mating, and aggression, are strongly associated with sex steroids, such as testosterone, estradiol, and progesterone. Secretion of sex steroids from the gonads is regulated by the hypothalamus-pituitary-gonadal (HPG) axis in vertebrates. Gonadotropin...

متن کامل

Voltage-gated potassium currents are targets of diurnal changes in estradiol feedback regulation and kisspeptin action on gonadotropin-releasing hormone neurons in mice.

Estradiol has both negative and positive feedback actions upon gonadotropin-releasing hormone (GnRH) release; the latter actions trigger the preovulatory GnRH surge. Although neurobiological mechanisms of the transitions between feedback modes are becoming better understood, the roles of voltage-gated potassium currents, major contributors to neuronal excitability, are unknown. Estradiol alters...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 40  شماره 

صفحات  -

تاریخ انتشار 2009