Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress

نویسنده

  • Pavel Pospíšil
چکیده

The effect of various abiotic stresses on photosynthetic apparatus is inevitably associated with formation of harmful reactive oxygen species (ROS). In this review, recent progress on ROS production by photosystem II (PSII) as a response to high light and high temperature is overviewed. Under high light, ROS production is unavoidably associated with energy transfer and electron transport in PSII. Singlet oxygen is produced by the energy transfer form triplet chlorophyll to molecular oxygen formed by the intersystem crossing from singlet chlorophyll in the PSII antennae complex or the recombination of the charge separated radical pair in the PSII reaction center. Apart to triplet chlorophyll, triplet carbonyl formed by lipid peroxidation transfers energy to molecular oxygen forming singlet oxygen. On the PSII electron acceptor side, electron leakage to molecular oxygen forms superoxide anion radical which dismutes to hydrogen peroxide which is reduced by the non-heme iron to hydroxyl radical. On the PSII electron donor side, incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. Under high temperature, dark production of singlet oxygen results from lipid peroxidation initiated by lipoxygenase, whereas incomplete water oxidation forms hydrogen peroxide which is reduced by manganese to hydroxyl radical. The understanding of molecular basis for ROS production by PSII provides new insight into how plants survive under adverse environmental conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Angiotensin II in Reactive Oxygen Species Production and Modulatory Role of Nitric Oxide (NO) in Vessel Responses to AngII in Acute Joint Inflammation in the Rabbit

Introduction: It has been approved that in most tissues NO production increases during acute inflammation and Angiotensin II has a role in production of reactive oxygen species (ROS). As regulation of joint blood flow (JBF) is important in this situation, this study was performed to investigate the interaction of local Ang II and ROS production and the modulatory role of NO on regulation of JBF...

متن کامل

Statistical Optimization of The Four Key Factors on β-Carotene Production by Dunaliella salina Under Laboratory Conditions Using Response Surface Methodology

During recent years, there was growing demand in using microalga valuable products such as β-carotene in health care. β-Carotene has anti-cancer and anti-aging properties for human. In Dunaliella salina cells, β-carotene has a major protecting role for biomolecules, when the production of reactive oxygen species elevated. In the present study, we investigated the influence of the four most effe...

متن کامل

Statistical Optimization of The Four Key Factors on β-Carotene Production by Dunaliella salina Under Laboratory Conditions Using Response Surface Methodology

During recent years, there was growing demand in using microalga valuable products such as β-carotene in health care. β-Carotene has anti-cancer and anti-aging properties for human. In Dunaliella salina cells, β-carotene has a major protecting role for biomolecules, when the production of reactive oxygen species elevated. In the present study, we investigated the influence of the four most effe...

متن کامل

Interaction of polyamine and proline on the activity of enzymatic and non‌-enzymatic compounds in the peel of three Citrus species under low temperature stress

Plants activate antioxidant defense mechanisms under stress, which help maintaining the structural integrity of cell components and possibly reduces oxidative damage.  Low temperature stress leads to the production of reactive oxygen species and oxidative damage to plants. In this study, the effect of putrescine and proline on reducing the production of reactive oxygen species and increasing th...

متن کامل

Singlet oxygen production in photosynthesis.

A photosynthetic organism is subjected to photo-oxidative stress when more light energy is absorbed than is used in photosynthesis. In the light, highly reactive singlet oxygen can be produced via triplet chlorophyll formation in the reaction centre of photosystem II and in the antenna system. In the antenna, triplet chlorophyll is produced directly by excited singlet chlorophyll, while in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2009