Maximum Norm Analysis of Implicit–explicit Backward Difference Formulae for Nonlinear Parabolic Equations
نویسندگان
چکیده
We establish optimal order a priori error estimates for implicit– explicit BDF methods for abstract semilinear parabolic equations with timedependent operators in a complex Banach space setting, under a sharp condition on the non-self-adjointness of the linear operator. Our approach relies on the discrete maximal parabolic regularity of implicit BDF schemes for autonomous linear parabolic equations, recently established in [19], and on ideas from [6]. We illustrate the applicability of our results to four initial and boundary value problems, namely two of second order, one of fractional order, and one of fourth order, that is the Cahn–Hilliard, parabolic equations.
منابع مشابه
Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations
Quasi-linear parabolic equations are discretised in time by fully implicit backward difference formulae (BDF) as well as by implicit–explicit and linearly implicit BDF methods up to order 5. Under appropriate stability conditions for the various methods considered, we establish optimal order a priori error bounds by energy estimates, which become applicable via the Nevanlinna-Odeh multiplier te...
متن کاملStability of Implicit-Explicit Backward Difference Formulas For Nonlinear Parabolic Equations
We analyze stability properties of BDF methods of order up to 5 for linear parabolic equations as well as of implicit–explicit BDF methods for nonlinear parabolic equations by energy techniques; time dependent norms play also a key role in the analysis.
متن کاملCombining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations
We analyze fully implicit and linearly implicit backward difference formula (BDF) methods for quasilinear parabolic equations, without making any assumptions on the growth or decay of the coefficient functions. We combine maximal parabolic regularity and energy estimates to derive optimal-order error bounds for the time-discrete approximation to the solution and its gradient in the maximum norm...
متن کاملBackward difference formulae: New multipliers and stability properties for parabolic equations
We determine new, more favourable, and in a sense optimal, multipliers for the threeand five-step backward difference formula (BDF) methods. We apply the new multipliers to establish stability of these methods as well as of their implicit–explicit counterparts for parabolic equations by energy techniques, under milder conditions than the ones recently imposed in [4, 1].
متن کاملConvergence and Stability of Explicit/implicit Schemes for Parabolic Equations with Discontinuous Coefficients
In this paper an explicit/implicit schemes for parabolic equations with discontinuous coefficients is analyzed. We show that the error of the solution in L∞ norm and the error of the discrete flux in L2 norm are in order O(τ + h2) and O(τ + h 3 2 ), respectively and the scheme is stable under some weaker conditions, while the difference scheme has the truncation error O(1) at the neighboring po...
متن کامل