linc-HOXA1 is a noncoding RNA that represses Hoxa1 transcription in cis.
نویسندگان
چکیده
Recently, researchers have uncovered the presence of many long noncoding RNAs (lncRNAs) in embryonic stem cells and believe they are important regulators of the differentiation process. However, there are only a few examples explicitly linking lncRNA activity to transcriptional regulation. Here, we used transcript counting and spatial localization to characterize a lncRNA (dubbed linc-HOXA1) located ∼50 kb from the Hoxa gene cluster in mouse embryonic stem cells. Single-cell transcript counting revealed that linc-HOXA1 and Hoxa1 RNA are highly variable at the single-cell level and that whenever linc-HOXA1 RNA abundance was high, Hoxa1 mRNA abundance was low and vice versa. Knockdown analysis revealed that depletion of linc-HOXA1 RNA at its site of transcription increased transcription of the Hoxa1 gene cis to the chromosome and that exposure of cells to retinoic acid can disrupt this interaction. We further showed that linc-HOXA1 RNA represses Hoxa1 by recruiting the protein PURB as a transcriptional cofactor. Our results highlight the power of transcript visualization to characterize lncRNA function and also suggest that PURB can facilitate lncRNA-mediated transcriptional regulation.
منابع مشابه
A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster.
We have identified an intergenic transcriptional activity that is located between the human HOXA1 and HOXA2 genes, shows myeloid-specific expression, and is up-regulated during granulocytic differentiation. The novel gene, termed HOTAIRM1 (HOX antisense intergenic RNA myeloid 1), is transcribed antisense to the HOXA genes and originates from the same CpG island that embeds the start site of HOX...
متن کاملAn enhancer element in the EphA2 (Eck) gene sufficient for rhombomere-specific expression is activated by HOXA1 and HOXB1 homeobox proteins.
In the hindbrain of the mouse embryo, there is often coincident rhombomere-restricted expression of Eph receptor tyrosine kinases and Hox homeobox genes, raising the possibility of regulatory interactions. In this paper, we have identified cis-acting regulatory sequences of the EphA2 (Eck) gene, which direct node and hindbrain-specific expression in transgenic embryos. An 8-kilobase region of m...
متن کاملHOXA1 binds RBCK1/HOIL-1 and TRAF2 and modulates the TNF/NF-κB pathway in a transcription-independent manner
HOX proteins define a family of key transcription factors regulating animal embryogenesis. HOX genes have also been linked to oncogenesis and HOXA1 has been described to be active in several cancers, including breast cancer. Through a proteome-wide interaction screening, we previously identified the TNFR-associated proteins RBCK1/HOIL-1 and TRAF2 as HOXA1 interactors suggesting that HOXA1 is fu...
متن کاملChanging homeodomain residues 2 and 3 of Hoxa1 alters its activity in a cell-type and enhancer dependent manner.
The second and third amino acid residues of the N-terminal arm of most Hox protein homeodomains are basic (lysine or arginine), whereas they are asparagine and alanine, respectively, in the Hoxa1 homeodomain. Previous reports pinpointed these residues as specificity determinants in the function of Hoxa1 when it is acting as a monomer. However, in vitro data supported that these residues do not ...
متن کاملThe Pbx Interaction Motif of Hoxa1 Is Essential for Its Oncogenic Activity
Hoxa1 belongs to the Hox family of homeodomain transcription factors involved in patterning embryonic territories and governing organogenetic processes. In addition to its developmental functions, Hoxa1 has been shown to be an oncogene and to be overexpressed in the mammary gland in response to a deregulation of the autocrine growth hormone. It has therefore been suggested that Hoxa1 plays a pi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 27 11 شماره
صفحات -
تاریخ انتشار 2013