A fast algorithm for learning epistatic genomic relationships.
نویسندگان
چکیده
Genetic epidemiologists strive to determine the genetic profile of diseases. Epistasis is the interaction between two or more genes to affect phenotype. Due to the often non-linearity of the interaction, it is difficult to detect statistical patterns of epistasis. Combinatorial methods for detecting epistasis investigate a subset of combinations of genes without employing a search strategy. Therefore, they do not scale to handling the high-dimensional data found in genome-wide association studies (GWAS). We represent genome-phenome interactions using a Bayesian network rule, which is a specialized Bayesian network. We develop an efficient search algorithm to learn from data a high scoring rule that may contain two or more interacting genes. Our experimental results using synthetic data indicate that this algorithm detects interacting genes as well as a Bayesian network combinatorial method, and it is much faster. Our results also indicate that the algorithm can successfully learn genome-phenome relationships using a real GWAS dataset.
منابع مشابه
Orthogonal Estimates of Variances for Additive, Dominance, and Epistatic Effects in Populations.
Genomic prediction methods based on multiple markers have potential to include nonadditive effects in prediction and analysis of complex traits. However, most developments assume a Hardy-Weinberg equilibrium (HWE). Statistical approaches for genomic selection that account for dominance and epistasis in a general context, without assuming HWE (e.g., crosses or homozygous lines), are therefore ne...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملPrioritizing tests of epistasis through hierarchical representation of genomic redundancies
Epistasis is defined as a statistical interaction between two or more genomic loci in terms of their association with a phenotype of interest. Epistatic loci that are identified using data from Genome-Wide Association Studies (GWAS) provide insights into the interplay among multiple genetic factors, with applications including assessment of susceptibility to complex diseases, decision making in...
متن کاملDetecting epistatic effects in association studies at a genomic level based on an ensemble approach
MOTIVATION Most complex diseases involve multiple genes and their interactions. Although genome-wide association studies (GWAS) have shown some success for identifying genetic variants underlying complex diseases, most existing studies are based on limited single-locus approaches, which detect single nucleotide polymorphisms (SNPs) essentially based on their marginal associations with phenotype...
متن کاملModification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AMIA ... Annual Symposium proceedings. AMIA Symposium
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010