Discriminative Training of Minimum Cost Speaker Verification Systems

نویسندگان

  • Larry Heck
  • Yochai Konig
چکیده

This paper presents a new training procedure for speaker verification systems. The procedure extends previous speaker verification work by (1) developing a new discriminative a posteriori-based training algorithm, and (2) extending the algorithm to directly optimize speaker verification performance. The key features of the new training algorithm include leveraging current state of the art technology by initializing the system with Bayesian-adapted Gaussian mixture models. The discriminative training algorithm then adjusts parameters of these models to directly minimize a verification cost function (VCF) representing the expected costs of falsely accepting impostors and falsely rejecting true claimants. Results are presented from the 1997 NIST Speaker Recognition Evaluation corpus indicating that the VCF performance can be improved with this procedure, but at the expense of reduced system performance at other operating points (different false alarm and false rejection costs).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminative PLDA training with application-specific loss functions for speaker verification

Speaker verification systems are usually evaluated by a weighted average of its false acceptance (FA) rate and false rejection (FR) rate. The weights are known as the operating point (OP) and depend on the applications. Recent researches suggest that, for the purpose of score calibration of speaker verification systems, it is beneficial to let discriminative training emphasize on the operating ...

متن کامل

Comparison of discriminative training methods for speaker verification

The maximum likelihood estimation (MLE) and Bayesian maximum a-posteriori (MAP) adaptation methods for Gaussian mixture models (GMM) have proven to be effective and efficient for speaker verification, even though each speaker model is trained using only his own training utterances. Discriminative criteria aim at increasing discriminability by using out-of-class data. In this paper, we consider ...

متن کامل

Component score weighting for GMM based text-independent speaker verification

GMM/UBM framework is wildly used in Automatic Speaker Verification (ASV), however, due to the insufficiency of the training data, both the hypothesized speaker and impostors are not well modeled, especially to some of the Gaussian component mixtures. Thus, the Gaussian mixtures in each GMM model have different discriminative capabilities, and the mismatch between testing and training data will ...

متن کامل

Pairwise Discriminative Speaker Verification in the 𝕀-Vector Space

This work presents a new and efficient approach to discriminative speaker verification in the i–vector space. We illustrate the development of a linear discriminative classifier that is trained to discriminate between the hypothesis that a pair of feature vectors in a trial belong to the same speaker or to different speakers. This approach is alternative to the usual discriminative setup that d...

متن کامل

Speaker verification using minimum verification error training

We propose a Minimum Verification Error (MVE) training scenario to design and adapt an HMM-based speaker verification system. By using the discriminative training paradigm, we show that customer and background models can be jointly estimated so that the expected number of verification errors (false accept and false reject) on the training corpus are minimized. An experimental evaluation of a fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998