Nickel Release, ROS Generation and Toxicity of Ni and NiO Micro- and Nanoparticles

نویسندگان

  • Siiri Latvala
  • Jonas Hedberg
  • Sebastiano Di Bucchianico
  • Lennart Möller
  • Inger Odnevall Wallinder
  • Karine Elihn
  • Hanna L Karlsson
چکیده

Occupational exposure to airborne nickel is associated with an elevated risk for respiratory tract diseases including lung cancer. Therefore, the increased production of Ni-containing nanoparticles necessitates a thorough assessment of their physical, chemical, as well as toxicological properties. The aim of this study was to investigate and compare the characteristics of nickel metal (Ni) and nickel oxide (NiO) particles with a focus on Ni release, reactive oxygen species (ROS) generation, cellular uptake, cytotoxicity and genotoxicity. Four Ni-containing particles of both nano-size (Ni-n and NiO-n) and micron-size (Ni-m1 and Ni-m2) were tested. The released amount of Ni in solution was notably higher in artificial lysosomal fluid (e.g. 80-100 wt% for metallic Ni) than in cell medium after 24h (ca. 1-3 wt% for all particles). Each of the particles was taken up by the cells within 4 h and they remained in the cells to a high extent after 24 h post-incubation. Thus, the high dissolution in ALF appeared not to reflect the particle dissolution in the cells. Ni-m1 showed the most pronounced effect on cell viability after 48 h (alamar blue assay) whereas all particles showed increased cytotoxicity in the highest doses (20-40 μg cm2) when assessed by colony forming efficiency (CFE). Interestingly an increased CFE, suggesting higher proliferation, was observed for all particles in low doses (0.1 or 1 μg cm-2). Ni-m1 and NiO-n were the most potent in causing acellular ROS and DNA damage. However, no intracellular ROS was detected for any of the particles. Taken together, micron-sized Ni (Ni-m1) was more reactive and toxic compared to the nano-sized Ni. Furthermore, this study underlines that the low dose effect in terms of increased proliferation observed for all particles should be further investigated in future studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toxic Effects of Nickel Oxide Bulk and Nanoparticles on the Aquatic Plant Lemna gibba L.

The aquatic plant Lemna gibba L. was used to investigate and compare the toxicity induced by 30 nm nickel oxide nanoparticles (NiO-NPs) and nickel(II) oxide as bulk (NiO-Bulk). Plants were exposed during 24 h to 0-1000 mg/L of NiO-NPs or NiO-Bulk. Analysis of physicochemical characteristics of nanoparticles in solution indicated agglomerations of NiO-NPs in culture medium and a wide size distri...

متن کامل

Evaluation of sodium dodecyl sulfate effects; the response of modified carbon paste electrode with nickel oxide nanoparticles in the presence of methanol

Synthesis of nickel oxide nanoparticles (NiO NPs) was carried out by Marrubium astranicum leaf extract. The average of particle sizes for NiO NPs was 40 nm. NiO NPs modified carbon paste electrodes in the absence (CPE/NiO NPs) and the presence of sodium dodecyl sulfate (CPE/NiO NPs/SDS) were examined for the electrocatalytic oxidation of methanol in alkaline solutions. The cyclic volta...

متن کامل

بررسی فعالیت آنزیم‌های آلکالین فسفاتاز، لاکتات دهیدروژناز، ترانس آمینازها و تغییرات هیستوپاتولوژیک کبد بعد از مواجهه با اکسید نیکل و نانوذره اکسید نیکل در موش صحرایی

Introduction: Nickel (Ni) and nickel compounds are widely used in industry, radiotherapy and nanomedicine. However, the toxicity of NiO nanoparticles is yet to be fully elucidated. In this study, we evaluated the toxicity of NiO and NiO nanoparticles (NiONPs) using basic medical diagnostic tools, such as biochemical tests and histopathological changes of liver in rats. Methods: In this experim...

متن کامل

Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris.

Adverse effects of manufactured nickel oxide nanoparticles on the microalgae Chlorellavulgaris were determined by algal growth-inhibition test and morphological observation via transmission electron microscopy (TEM). Results showed that the NiO nanoparticles had severe impacts on the algae, with 72 h EC(50) values of 32.28 mg NiOL(-1). Under the stress of NiO nanoparticles, C. vulgaris cells sh...

متن کامل

Nickel Oxide (NiO) nanoparticles prepared by solid-state thermal decomposition of Nickel (II) schiff base precursor

In this paper, plate-like NiO nanoparticles were prepared by one-pot solid-state thermal decomposition of nickel (II) Schiff base complex as new precursor. First, the nickel (II) Schiff base precursor was prepared by solid-state grinding using nickel (II) nitrate hexahydrate, Ni(NO3)2∙6H2O, and the Schiff base ligand N,N′-bis-(salicylidene) benzene-1,4-diamine) for 30 min without using any solv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016