Explanation for the apparent inefficiency of reduced nicotinamide adenine dinucleotide in energizing amino acid transport in membrane vesicles.

نویسندگان

  • M L Hampton
  • E Freese
چکیده

Lineweaver-Burk plots of reduced nicotinamide adenine dinucleotide (NADH) oxidation by membrane preparations from Bacillus subtilis are biphasic, with two K(m) values for NADH. The higher K(m) corresponds to the only K(m) observed for NADH oxidation by whole cells, whereas the lower K(m) corresponds to that observed with open cell envelopes. Membrane preparations apparently contain a small fraction of open or inverted vesicles which is responsible for the low K(m) reaction, whereas entry of NADH into the larger portion of closed, normally oriented vesicles is rate limiting and responsible for the high K(m) reaction. In contrast, the oxidation of l-alpha-glycerol-phosphate (glycerol-P) by membrane preparations shows only one K(m) that corresponds to that of glycerol-P oxidation by whole cells or lysates. Since glycerol-P dehydrogenase (NAD independent) has the same K(m), this enzyme reaction rather than entry of glycerol-P into vesicles represents the rate-limiting step for glycerol-phosphate oxidation. The K(m) for amino acid uptake by vesicles in the presence of NADH corresponds to the high K(m) for NADH oxidation, indicating that NADH energizes transport only if it enters closed, normally oriented vesicles. Studies with rotenone and proteolytic enzymes support this interpretation. The apparent efficiency of NADH in energizing uptake seems to be lower than that of glycerol-P because, under the experimental conditions usually employed, open or inverted vesicles that do not participate in amino acid uptake are responsible for the major portion of NADH oxidation. When the results are corrected for this effect, the efficiency of NADH is essentially the same as that of l-alpha-glycerol-P.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Internally generated reduced nicotinamide adenine dinucleotide as a substrate for glycine transport by membrane vesicles of Paracoccus denitrificans.

Internally generated reduced nicotinamide adenine dinucleotide was the most efficient substrate for glycine transport by membrane vesicles of Paracoccus denitrificans.

متن کامل

Oxidative phosphorylation in right-side-out membrane vesicles from Escherichia coli.

Oxidative phosphorylation in Escherichia coli membrane vesicles with a right-side-out orientation and loaded with ADP was investigated. Substrates of the electron transport chain could energize the phosphorylation of ADP, with the order of effectiveness being D-lactate greater than reduced phenazinemethosulfate greater than succinate greater than reduced nicotinamide adenine dinucleotide. Inhib...

متن کامل

Mechanisms of Active Transport in Isolated Bacterial Membrane Vesicles

Valinomycin-induced uptake of rubidium by membrane vesicles prepared from Escherichia coli, Staphylococcus QUreus, and Micrococcus denifrificans is analogous in nearly all respects to the transport of sugars or amino acids, or both, by these membrane vesicles. In E. coli membrane vesicles, concentrative rubidium uptake is stimulated maximally by D-lactate and by the artificial electron donor as...

متن کامل

Mechanisms of active transport in isolated bacterial membrane vesicles. 18. The mechanism of action of carbonylcyanide m-chlorophenylhydrazone.

Valinomycin-induced uptake of rubidium by membrane vesicles prepared from Escherichia coli, Staphylococcus QUreus, and Micrococcus denifrificans is analogous in nearly all respects to the transport of sugars or amino acids, or both, by these membrane vesicles. In E. coli membrane vesicles, concentrative rubidium uptake is stimulated maximally by D-lactate and by the artificial electron donor as...

متن کامل

Inhibition of amino acid transport by ammonium ion in Saccharomyces cerevisiae.

The rate of transport of L-amino acids by Saccharomyces cerevisiae epsilon 1278b increased with time in response to nitrogen starvation. This increase could be prevented by the addition of ammonium sulfate or cycloheximide. A slow time-dependent loss of transport activity was observed when ammonium sulfate (or ammonium sulfate plus cycloheximide) was added to cells after 3 h of nitrogen starvat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 118 2  شماره 

صفحات  -

تاریخ انتشار 1974