Genome-Wide Transcript Profiling Reveals the Coevolution of Plastid Gene Sequences and Transcript Processing Pathways in the Fucoxanthin Dinoflagellate Karlodinium veneficum
نویسندگان
چکیده
Plastids utilize a complex gene expression machinery, which has coevolved with the underlying genome sequence. Relatively, little is known about the genome-wide evolution of transcript processing in algal plastids that have undergone complex endosymbiotic events. We present the first genome-wide study of transcript processing in a plastid acquired through serial endosymbiosis, in the fucoxanthin-containing dinoflagellate Karlodinium veneficum. The fucoxanthin dinoflagellate plastid has an extremely divergent genome and utilizes two unusual transcript processing pathways, 3'-poly(U) tail addition and sequence editing, which were acquired following the serial endosymbiosis event. We demonstrate that poly(U) addition and sequence editing are widespread features across the Karl. veneficum plastid transcriptome, whereas other dinoflagellate plastid lineages that have arisen through independent serial endosymbiosis events do not utilize either RNA processing pathway. These pathways constrain the effects of divergent sequence evolution in fucoxanthin plastids, for example by correcting mutations in the genomic sequence that would otherwise be deleterious, and are specifically associated with transcripts that encode functional plastid proteins over transcripts of recently generated pseudogenes. These pathways may have additionally facilitated divergent evolution within the Karl. veneficum plastid. Transcript editing, for example, has contributed to the evolution of a novel C-terminal sequence extension on the Karl. veneficum AtpA protein. We furthermore provide the first complete sequence of an episomal minicircle in a fucoxanthin dinoflagellate plastid, which contains the dnaK gene, and gives rise to polyuridylylated and edited transcripts. Our results indicate that RNA processing in fucoxanthin dinoflagellate plastids is evolutionarily dynamic, coevolving with the underlying genome sequence.
منابع مشابه
Genome Evolution of a Tertiary Dinoflagellate Plastid
The dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, th...
متن کاملGenome Fragmentation Is Not Confined to the Peridinin Plastid in Dinoflagellates
When plastids are transferred between eukaryote lineages through series of endosymbiosis, their environment changes dramatically. Comparison of dinoflagellate plastids that originated from different algal groups has revealed convergent evolution, suggesting that the host environment mainly influences the evolution of the newly acquired organelle. Recently the genome from the anomalously pigment...
متن کاملIntegration of plastids with their hosts: Lessons learned from dinoflagellates.
After their endosymbiotic acquisition, plastids become intimately connected with the biology of their host. For example, genes essential for plastid function may be relocated from the genomes of plastids to the host nucleus, and pathways may evolve within the host to support the plastid. In this review, we consider the different degrees of integration observed in dinoflagellates and their assoc...
متن کاملAnti-grazing properties of the toxic dinoflagellate Karlodinium veneficum during predator–prey interactions with the copepod Acartia tonsa
Karlodinium veneficum (syn. Karlodinium micrum, Bergholtz et al. 2006; J Phycol 42: 170–193) is a small athecate dinoflagellate commonly present in low levels in temperate, coastal waters. Occasionally, K. veneficum forms ichthyotoxic blooms due to the presence of cytotoxic, hemolytic compounds, putatively named karlotoxins. To evaluate the anti-grazing properties of these karlotoxins, we condu...
متن کاملA single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis.
The most widely distributed dinoflagellate plastid contains chlorophyll c(2) and peridinin as the major carotenoid. A second plastid type, found in taxa such as Karlodinium micrum and Karenia spp., contains chlorophylls c(1) + c(2) and 19'-hexanoyloxy-fucoxanthin and/or 19'-butanoyloxy-fucoxanthin but lacks peridinin. Because the presence of chlorophylls c(1) + c(2) and fucoxanthin is typical o...
متن کامل