3D Animation Compression Using Affine Transformation Matrix and Principal Component Analysis
نویسندگان
چکیده
This paper investigates the use of the affine transformation matrix when employing principal component analysis (PCA) to compress the data of 3D animation models. Satisfactory results were achieved for the common 3D models by using PCA because it can simplify several related variables to a few independent main factors, in addition to making the animation identical to the original by using linear combinations. The selection of the principal component factor (also known as the base) is still a subject for further research. Selecting a large number of bases could improve the precision of the animation and reduce distortion for a large data volume. Hence, a formula is required for base selection. This study develops an automatic PCA selection method, which includes the selection of suitable bases and a PCA separately on the three axes to select the number of suitable bases for each axis. PCA is more suitable for animation models for apparent stationary movement. If the original animation model is integrated with transformation movements such as translation, rotation, and scaling (RTS), the resulting animation model will have a greater distortion in the case of the same base vector with regard to apparent stationary movement. This paper is the first to extract the model movement characteristics using the affine transformation matrix and then to compress 3D animation using PCA. The affine transformation matrix can record the changes in the geometric transformation by using 4 × 4 matrices. The transformed model can eliminate the influences of geometric transformations with the animation model normalized to a limited space. Subsequently, by using PCA, the most suitable base vector (variance) can be selected more precisely. key words: computer animation, mesh decomposition, principal component analysis, affine transformation matrix
منابع مشابه
A Skinning Prediction Scheme for Dynamic 3D Mesh Compression
This paper presents a new prediction-based compression technique for dynamic 3D meshes with constant connectivity and time-varying geometry. The core of the proposed algorithm is a skinning model used for motion compensation. The mesh is first partitioned within vertex clusters that can be described by a single affine motion model. The proposed segmentation technique automatically determines th...
متن کاملA skinning approach for dynamic 3D mesh compression
This paper proposes a novel approach for 3D mesh compression, based on a skinning animation technique. The core of the proposed method is a piecewise affine predictor coupled with a skinning model and a DCT representation of the residuals errors. The experimental evaluation shows that the proposed skinning-based encoder outperforms (with bitrates gains from 47% to 67%) GV, RT, MPEG-4/AFX-IC, D3...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملDeep Adaptive Log-Demons: Diffeomorphic Image Registration with Very Large Deformations
This paper proposes a new framework for capturing large and complex deformation in image registration. Traditionally, this challenging problem relies firstly on a preregistration, usually an affine matrix containing rotation, scale, and translation and afterwards on a nonrigid transformation. According to preregistration, the directly calculated affine matrix, which is obtained by limited pixel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 90-D شماره
صفحات -
تاریخ انتشار 2007