Inhibition of GTP-dependent vesicle trafficking impairs internalization of plasmalemmal eNOS and cellular nitric oxide production.
نویسندگان
چکیده
The Ca2+ mobilizing peptide, bradykinin (BK), stimulates endothelial nitric oxide synthase (eNOS)-derived cellular nitric oxide (NO) production in association with altering the subcellular distribution of the enzyme. In the present study we examine the influence of cellular GTPases, particularly the large GTPase dynamin, on BK-mediated eNOS localization and cellular NO production. BK stimulation of ECV cells, which were stably transfected with eNOS-GFP (eNOS-GFP ECV304), increased NO production. This was associated with the mobilization of eNOS-GFP protein into Triton X-100-insoluble fractions of cell lysates, and an internalization of plasmalemmal eNOS-GFP in live and fixed ECV 304 cells. Incubation of digitonin-permeabilized ECV304 cells with the non-hydrolyzed GTP analog, GTP-gamma-S, abrogated the BK-mediated internalization of eNOS-GFP as assessed by confocal microscopy. Conversely, inhibition of clathrin-dependent endocytosis, via overexpression of AP 180 or pretreatment of cells with chlorpromazine, did not influence BK-mediated eNOS redistribution. Furthermore, specific inhibition of dynamin-2 GTPase function by overexpression of a dominant negative construct, K44A, prevented the BK-mediated enrichment of eNOS-GFP within low buoyant density, caveolin-enriched fractions of eNOS-GFP ECV304 cell lysates. Dynamin-2 K44A overexpression also markedly impaired BK-dependent, L-NAME-inhibited NO production as did incubation of permeabilized cells with GTP-gamma-s. These studies demonstrate that disruption of dynamin- and GTP-dependent, but clathrin-independent, vesicle trafficking pathways impairs BK-dependent cellular NO production, via inhibition of the internalization of eNOS-containing plasmalemmal vesicles.
منابع مشابه
Periadventitial adipose tissue impairs coronary endothelial function via PKC- -dependent phosphorylation of nitric oxide synthase
Payne GA, Bohlen HG, Dincer ÜD, Borbouse L, Tune JD. Periadventitial adipose tissue impairs coronary endothelial function via PKC-dependent phosphorylation of nitric oxide synthase. Am J Physiol Heart Circ Physiol 297: H460–H465, 2009. First published May 29, 2009; doi:10.1152/ajpheart.00116.2009.—Endogenous periadventitial adipose-derived factors have been shown to contribute to coronary vascu...
متن کاملTrafficking of endothelial nitric-oxide synthase in living cells. Quantitative evidence supporting the role of palmitoylation as a kinetic trapping mechanism limiting membrane diffusion.
To examine endothelial nitric-oxide synthase (eNOS) trafficking in living endothelial cells, the eNOS-deficient endothelial cell line ECV304 was stably transfected with an eNOS-green fluorescent protein (GFP) fusion construct and characterized by functional, biochemical, and microscopic analysis. eNOS-GFP was colocalized with Golgi and plasma membrane markers and produced NO in response to agon...
متن کاملOxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation.
Hypercholesterolemia-induced vascular disease and atherosclerosis are characterized by a decrease in the bioavailability of endothelium-derived nitric oxide. Endothelial nitric-oxide synthase (eNOS) associates with caveolae and is directly regulated by the caveola protein, caveolin. In the present study, we examined the effects of oxidized low density lipoprotein (oxLDL) on the subcellular loca...
متن کاملPeriadventitial adipose tissue impairs coronary endothelial function via PKC-beta-dependent phosphorylation of nitric oxide synthase.
Endogenous periadventitial adipose-derived factors have been shown to contribute to coronary vascular regulation by impairing endothelial function through a direct inhibition of endothelial nitric oxide synthase (eNOS). However, our understanding of the underlying mechanisms remains uncertain. Accordingly, this study was designed to test the hypothesis that periadventitial adipose tissue releas...
متن کاملChronic intrauterine pulmonary hypertension increases endothelial cell Rho kinase activity and impairs angiogenesis in vitro.
Persistent pulmonary hypertension of the newborn (PPHN) is characterized by endothelial dysfunction and decreased vascular growth. The role of Rho kinase activity in modulating endothelial function and regulating angiogenesis during normal lung development and in PPHN is unknown. We hypothesized that PPHN increases Rho kinase activity in fetal pulmonary artery endothelial cells (PAECs) and impa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 116 Pt 17 شماره
صفحات -
تاریخ انتشار 2003