Persistent sodium currents in mesencephalic v neurons participate in burst generation and control of membrane excitability.
نویسندگان
چکیده
The functional and biophysical properties of a persistent sodium current (I(NaP)) previously proposed to participate in the generation of subthreshold oscillations and burst discharge in mesencephalic trigeminal sensory neurons (Mes V) were investigated in brain stem slices (rats, p7-p12) using whole cell patch-clamp methods. I(NaP) activated around -76 mV and peaked at -48 mV, with V1/2 of -58.7 mV. Ramp voltage-clamp protocols showed that I(NaP) undergoes time- as well as voltage-dependent inactivation and recovery from inactivation in the range of several seconds (tau(onset) = 2.04 s, tau(recov) = 2.21 s). Riluzole (< or =5 microM) substantially reduced I(NaP), membrane resonance, postinhibitory rebound (PIR), and subthreshold oscillations, and completely blocked bursting, but produced modest effects on the fast transient Na+ current (I(NaT)). Before complete cessation, burst cycle duration was increased substantially, while modest and inconsistent changes in burst duration were observed. The properties of the I(NaT) were obtained and revealed that the amplitude and voltage dependence of the resulting "window current" were not consistent with those of the observed I(NaP) recorded in the same neurons. This suggests an additional mechanism for the origin of I(NaP). A neuronal model was constructed using Hodgkin-Huxley parameters obtained experimentally for Na+ and K+ currents that simulated the experimentally observed membrane resonance, subthreshold oscillations, bursting, and PIR. Alterations in the model g(NaP) parameters indicate that I(NaP) is critical for control of subthreshold and suprathreshold Mes V neuron membrane excitability and burst generation.
منابع مشابه
Participation of sodium currents in burst generation and control of membrane excitability in mesencephalic trigeminal neurons.
Subthreshold sodium currents are important in sculpting neuronal discharge and have been implicated in production and/or maintenance of subthreshold membrane oscillations and burst generation in mesencephalic trigeminal neurons (Mes V). Moreover, recent data suggest that, in some CNS neurons, resurgent sodium currents contribute to production of high-frequency burst discharge. In the present st...
متن کاملSodium currents in mesencephalic trigeminal neurons from Nav1.6 null mice.
Previous studies using pharmacological methods suggest that subthreshold sodium currents are critical for rhythmical burst generation in mesencephalic trigeminal neurons (Mes V). In this study, we characterized transient (I(NaT)), persistent (I(N)(aP)), and resurgent (I(res)) sodium currents in Na(v)1.6-null mice (med mouse, Na(v)1.6(-/-)) lacking expression of the sodium channel gene Scn8a. We...
متن کاملMembrane resonance and subthreshold membrane oscillations in mesencephalic V neurons: participants in burst generation.
Trigeminal mesencephalic (Mes V) neurons are critical components of the circuits controlling oral-motor activity. The possibility that they can function as interneurons necessitates a detailed understanding of the factors controlling their soma excitability. Using whole-cell patch-clamp recording, in vitro, we investigated the development of the ionic mechanisms responsible for the previously d...
متن کاملParticipation of Kv1 channels in control of membrane excitability and burst generation in mesencephalic V neurons.
The function and biophysical properties of low threshold Kv1 current in control of membrane resonance, subthreshold oscillations, and bursting in mesencephalic V neurons (Mes V) were examined in rat brain stem slices (P8-P12) using whole cell current and voltage patch-clamp methods. alpha-dendrotoxin application, a toxin with high specificity for Kv1.1, 1.2, and 1.6 channels, showed the presenc...
متن کاملElectrophysiological Features of Neurons in the Mesencephalic Trigeminal Nuclei.
Mesencephalic trigeminal nucleus (Mes V) neurons represent an uncommon class of primary sensory neurons. Besides receiving somatosensory information, Mes V neurons are also involved in regulating multisensory information. The present review first describes the passive features as well as three important currents, followed by a distinct excitability classification and a description of the excita...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 93 5 شماره
صفحات -
تاریخ انتشار 2005