A Central Weno-tvd Scheme for Hyperbolic Conservation Laws
نویسندگان
چکیده
The purpose of this paper is to carry out a modification of the finite volume WENO (weighted essentially non-oscillatory) scheme of Titarev and Toro [10]. This modification is done by using the third order TVD flux [10] as building blocks in spatially fifth order WENO schemes, instead of the second order TVD flux proposed by Titarev and Toro. The resulting scheme improves both the original and Toros flux in terms of order of accuracy, convergence and better resolution of discontinuities. The numerical solution is advanced in time by TVD Runge-Kutta method. Extension to systems is carried out by the component-wise application of the scalar framework. Numerical experiments confirm the high resolution of the proposed scheme. Thus, a considerable amount of simplicity and robustness is gained while retaining the expected third-order resolution. AMS Mathematics Subject Classification (2000): 65M10, 65M05
منابع مشابه
A total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملHigh-resolution finite compact difference schemes for hyperbolic conservation laws
A finite compact (FC) difference scheme requiring only bi-diagonal matrix inversion is proposed by using the known high-resolution flux. Introducing TVD or ENO limiters in the numerical flux, several high-resolution FC-schemes of hyperbolic conservation law are developed, including the FC-TVD, third-order FC-ENO and fifth-order FC-ENO schemes. Boundary conditions formulated need only one unknow...
متن کاملA new total variation diminishing implicit nonstandard finite difference scheme for conservation laws
In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...
متن کاملA Hybrid Cosmological Hydrodynamic/n-body Code Based on the Weighted Essentially Non-oscillatory Scheme
We describe a newly developed cosmological hydrodynamics code based on the weighted essentially non-oscillatory (WENO) schemes for hyperbolic conservation laws. High order finite difference WENO schemes are designed for problems with piecewise smooth solutions containing discontinuities, and have been successful in applications for problems involving both shocks and complicated smooth solution ...
متن کامل