Controlling the distance to a Kemeny consensus without computing it

نویسندگان

  • Yunlong Jiao
  • Anna Korba
  • Eric Sibony
چکیده

Due to its numerous applications, rank aggregation has become a problem of major interest across many fields of the computer science literature. In the vast majority of situations, Kemeny consensus(es) are considered as the ideal solutions. It is however well known that their computation is NP-hard. Many contributions have thus established various results to apprehend this complexity. In this paper we introduce a practical method to predict, for a ranking and a dataset, how close this ranking is to the Kemeny consensus(es) of the dataset. A major strength of this method is its generality: it does not require any assumption on the dataset nor the ranking. Furthermore, it relies on a new geometric interpretation of Kemeny aggregation that we believe could lead to many other results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixed-Parameter Algorithms for Kemeny Scores

The Kemeny Score problem is central to many applications in the context of rank aggregation. Given a set of permutations (votes) over a set of candidates, one searches for a “consensus permutation” that is “closest” to the given set of permutations. Computing an optimal consensus permutation is NP-hard. We provide first, encouraging fixed-parameter tractability results for computing optimal sco...

متن کامل

A novel three-stage distance-based consensus ranking method

In this study, we propose a three-stage weighted sum method for identifying the group ranks of alternatives. In the first stage, a rank matrix, similar to the cross-efficiency matrix, is obtained by computing the individual rank position of each alternative based on importance weights. In the second stage, a secondary goal is defined to limit the vector of weights since the vector of weights ob...

متن کامل

Fixed-parameter algorithms for Kemeny rankings

The computation of Kemeny rankings is central to many applications in the context of rank aggregation. Given a set of permutations (votes) over a set of candidates, one searches for a “consensus permutation” that is “closest” to the given set of permutations. Unfortunately, the problem is NP-hard. We provide a broad study of the parameterized complexity for computing optimal Kemeny rankings. Be...

متن کامل

Average Parameterization and Partial Kernelization for Computing Medians

We propose an effective polynomial-time preprocessing strategy for intractable median problems. Developing a new methodological framework, we show that if the input instances of generally intractable problems exhibit a sufficiently high degree of similarity between each other on average, then there are efficient exact solving algorithms. In other words, we show that the median problems Swap Med...

متن کامل

Studienarbeit

The central problem in this work is to compute a ranking of a set of elements which is “closest to” a given set of input rankings of the elements. We define “closest to” in an established way as having the minimum sum of Kendall-Tau distances to each input ranking. Unfortunately, the resulting problem Kemeny consensus is NP-hard for instances with n input rankings, n being an even integer great...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016