A Real Coded Genetic Algorithm for Optimization of Cutting Parameters in Turning

نویسنده

  • T. Srikanth
چکیده

Asso. Prof.,Dept. of Mech. Engg. G.I.E.T, Rajahmundry, A.P, India DGM (Retd.), B.H.E.L, R&D, Balanagar, Hyderabad, A.P, India Abstract Surface roughness, an indicator of surface quality is one of the most specified customer requirements in a machining process. For efficient use of machine tools, optimum cutting parameters (speed, feed and depth of cut) are required. So it is necessary to find a suitable optimization method which can find optimum values of cutting parameters for minimizing surface roughness. The turning process parameter optimization is highly constrained and nonlinear, so this paper proposes a real coded genetic algorithm (RCGA) to find optimum cutting parameters. This paper explains various issues of RCGA and its advantages over the existing approach of binary coded genetic algorithm. The results obtained, conclude that RCGA is reliable and accurate for solving the cutting parameter optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Minimum Quantity Liquid Parameters in Turning for the Minimization of Cutting Zone Temperature

The use of cutting fluid in manufacturing industries has now become more problematic due to environmental pollution and health related problems of employees. Also the minimization of cutting fluid leads to the saving of lubricant cost and cleaning time of machine, tool and work-piece. The concept of minimum Quantity Lubrication (MQL) has come in to practice since a decade ago in order to overco...

متن کامل

Estimation of optimal cutting parameters of plane turning using quantum inspired evolutionary algorithm

Turning is a versatile machining process that involves different cutting parameters and conditions. The surface finish is the vital design requirement as it is a key indicator of quality of the work piece. This work, presents the application of Quantum Inspired Evolutionary Algorithm (QIEA), that essentially exploits some principles of quantum mechanics such as Q-bits, superposition, quantum ga...

متن کامل

Optimization of Cutting Parameters Based on Production Time Using Colonial Competitive (CC) and Genetic (G) Algorithms

A properly designed machining procedure can significantly affect the efficiency of the production lines. To minimize the cost of machining process as well as increasing the quality of products, cutting parameters must permit the reduction of cutting time and cost to the lowest possible levels. To achieve this, cutting parameters must be kept in the optimal range. This is a non-linear optimizati...

متن کامل

Optimization of Cutting Parameters Based on Production Time Using Colonial Competitive (CC) and Genetic (G) Algorithms

A properly designed machining procedure can significantly affect the efficiency of the production lines. To minimize the cost of machining process as well as increasing the quality of products, cutting parameters must permit the reduction of cutting time and cost to the lowest possible levels. To achieve this, cutting parameters must be kept in the optimal range. This is a non-linear optimizati...

متن کامل

OPTIMUM PLACEMENT AND PROPERTIES OF TUNED MASS DAMPERS USING HYBRID GENETIC ALGORITHMS

Tuned mass dampers (TMDs) systems are one of the vibration controlled devices used to reduce the response of buildings subject to lateral loadings such as wind and earthquake loadings. Although TMDs system has received much attention from researchers due to their simplicity, the optimization of properties and placement of TMDs is a challenging task. Most research studies consider optimization o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008