Deformable Registration Through Learning of Context-Specific Metric Aggregation
نویسندگان
چکیده
We propose a novel weakly supervised discriminative algorithm for learning context specific registration metrics as a linear combination of conventional similarity measures. Conventional metrics have been extensively used over the past two decades and therefore both their strengths and limitations are known. The challenge is to find the optimal relative weighting (or parameters) of different metrics forming the similarity measure of the registration algorithm. Hand-tuning these parameters would result in sub optimal solutions and quickly become infeasible as the number of metrics increases. Furthermore, such hand-crafted combination can only happen at global scale (entire volume) and therefore will not be able to account for the different tissue properties. We propose a learning algorithm for estimating these parameters locally, conditioned to the data semantic classes. The objective function of our formulation is a special case of non-convex function, difference of convex function, which we optimize using the concave convex procedure. As a proof of concept, we show the impact of our approach on three challenging datasets for different anatomical structures and modalities.
منابع مشابه
Real-Time 2D/3D Deformable Registration Using Metric Learning
We present a novel 2D/3D deformable registration method, called Registration Efficiency and Accuracy through Learning Metric on Shape (REALMS), that can support real-time Image-Guided Radiation Therapy (IGRT ). The method consists of two stages: planning-time learning and registration. In the planning-time learning, it firstly models the patient’s 3D deformation space from the patient’s time-va...
متن کاملRegional Manifold Learning for Deformable Registration of Brain MR Images
We propose a method for deformable registration based on learning the manifolds of individual brain regions. Recent publications on registration of medical images advocate the use of manifold learning in order to confine the search space to anatomically plausible deformations. Existing methods construct manifolds based on a single metric over the entire image domain thus frequently miss regiona...
متن کاملA Deep Metric for Multimodal Registration
Multimodal registration is a challenging problem due the high variability of tissue appearance under different imaging modalities. The crucial component here is the choice of the right similarity measure. We make a step towards a general learning-based solution that can be adapted to specific situations and present a metric based on a convolutional neural network. Our network can be trained fro...
متن کاملLNCS 7766 - Medical Computer Vision
We present a novel 2D/3D deformable registration method, called Registration Efficiency and Accuracy through Learning Metric on Shape (REALMS), that can support real-time Image-Guided Radiation Therapy (IGRT ). The method consists of two stages: planning-time learning and registration. In the planning-time learning, it firstly models the patient’s 3D deformation space from the patient’s time-va...
متن کاملEvaluation of deformable image registration in HDR gynecological brachytherapy
Introduction: In brachytherapy, as in external radiotherapy, image-guidance plays an important role. For GYN treatments it is standard to acquire at least CT images and preferably MR images prior to each treatment and to calculate the dose of the day on each set of images. Then, the dose to the target and to the organs at risk (OAR) is calculated with worst case scenario from I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017