Commensurability Classes of Twist Knots
نویسندگان
چکیده
In this paper we prove that if MK is the complement of a non-fibered twist knot K in S, then MK is not commensurable to a fibered knot complement in a Z/2Z-homology sphere. To prove this result we derive a recursive description of the character variety of twist knots and then prove that a commensurability criterion developed by D. Calegari and N. Dunfield is satisfied for these varieties. In addition, we partially extend our results to a second infinite family of 2-bridge knots.
منابع مشابه
COMMENSURABILITY CLASSES OF (−2, 3, n) PRETZEL KNOT COMPLEMENTS
Let K be a hyperbolic (−2, 3, n) pretzel knot and M = S \ K its complement. For these knots, we verify a conjecture of Reid and Walsh: there are at most three knot complements in the commensurability class of M . Indeed, if n 6= 7, we show that M is the unique knot complement in its class. We include examples to illustrate how our methods apply to a broad class of Montesinos knots.
متن کاملOn the AJ conjecture for cables of the figure eight knot
The AJ conjecture relates the A-polynomial and the colored Jones polynomial of a knot in the 3-sphere. It has been verified for some classes of knots, including all torus knots, most double twist knots, (−2, 3, 6n ± 1)-pretzel knots, and most cabled knots over torus knots. In this paper we study the AJ conjecture for (r, 2)-cables of a knot, where r is an odd integer. In particular, we show tha...
متن کاملTwisted Reidemeister Torsion for Twist Knots
A. The aim of this paper is to give an explicit formula for the SL 2(C)-twisted Reidemeister torsion in the case of twist knots. For hyperbolic twist knots, we also prove that the twisted Reidemeister torsion at the holonomy representation can be expressed as a rational function evaluated at the cusp shape of the knot. Tables giving approximations of the twisted Reidemeister torsion for ...
متن کاملWhich Finite Simple Knots Are Twist-spun?
We investigate which simple even-dimensional knots with finite knot modules may arise as twist-spun simple knots; and give some examples of knots which cannot so arise for reasons which are essentially number-theoretic.
متن کاملOn the Reversibility of Twist-spun Knots
Litherland has shown that if a knot is (+)-amphicheiral then its m-twist-spin is reversible. We show that, for classical knots, in many cases the converse holds. The irreversibility (sometimes called noninvertibility) of certain twist-spun knots has been established by Ruberman [10], using the Farber-Levine linking pairing and the Casson-Gordon invariants. More recently, alternative proofs of t...
متن کامل