Accelerating the GMRES Solver with Block ILU (K) Preconditioner on GPUs in Reservoir Simulation
نویسندگان
چکیده
The solution of sparse linear systems is the most time-consuming step in running reservoir simulations; over 70% of time is spent on the solution of linear systems derived from the Newton methods [1]. If large highly heterogeneous reservoir models are applied, their linear systems are even harder to solve and require much more simulation time. Hence fast solution techniques are fundamental to large-scale reservoir simulations.
منابع مشابه
Accelerating Preconditioned Iterative Linear Solvers on Gpu
Linear systems are required to solve in many scientific applications and the solution of these systems often dominates the total running time. In this paper, we introduce our work on developing parallel linear solvers and preconditioners for solving large sparse linear systems using NVIDIA GPUs. We develop a new sparse matrix-vector multiplication kernel and a sparse BLAS library for GPUs. Base...
متن کاملGPU-based Parallel Reservoir Simulators
Nowadays reservoir simulators are indispensable tools to reservoir engineers. They are widely used in the optimization and prediction of oil and gas production. However, for large-scale reservoir simulation, computational time is usually too long. A case with over one million grid blocks may run weeks or even months. High performance processors and well-designed software are demanded. Though to...
متن کاملAn Efficient and Effective Nonlinear Solver in a Parallel Software for Large Scale Petroleum Reservoir Simulation
We study a parallel Newton-Krylov-Schwarz (NKS) based algorithm for solving large sparse systems resulting from a fully implicit discretization of partial differential equations arising from petroleum reservoir simulations. Our NKS algorithm is designed by combining an inexact Newton method with a rank-2 updated quasi-Newton method. In order to improve the computational efficiency, both DDM and...
متن کاملA Cost-effective Ilu Preconditioner for Weather Simulation
To date, the most efficient solver used in the weather sciences for the resolution of linear system in numerical weather prediction is the generalized minimal residual method called GMRES. However, difficulties still appear in matrix resolution when the GMRES iterative method is used without an appropriate preconditioner. For improving the computation speed in numerically solving weather equati...
متن کاملAn Investigation into Preconditioning Iterative Solvers for Hydrodynamic Problems
Two Krylov subspace iterative methods, GMRES and QMR, were studied in conjunction with several preconditioning techniques for solving the linear system raised from the finite element discretisation of incompressible Navier-Stokes equations for hydrodynamic problems. The preconditioning methods under investigation were the incomplete factorisation methods such as ILU(0) and MILU, the Stokes prec...
متن کامل