High mobility group proteins HMGD and HMGZ interact genetically with the Brahma chromatin remodeling complex in Drosophila.

نویسندگان

  • Anan Ragab
  • Elizabeth C Thompson
  • Andrew A Travers
چکیده

Many pleiotropic roles have been ascribed to small abundant HMG-Box (HMGB) proteins in higher eukaryotes but their precise function has remained enigmatic. To investigate their function genetically we have generated a defined deficiency uncovering the functionally redundant genes encoding HMGD and HMGZ, the Drosophila counterparts of HMGB1-3 in mammals. The resulting mutant is a strong hypomorphic allele of HmgD/Z. Surprisingly this allele is viable and exhibits only minor morphological defects even when homozygous. However, this allele interacts strongly with mutants of the Brahma chromatin remodeling complex, while no interaction was observed with mutant alleles of other remodeling complexes. We also observe genetic interactions between the HmgD/Z deficiency and some, but not all, known Brahma targets. These include the homeotic genes Sex combs reduced and Antennapedia, as well as the gene encoding the cell-signaling protein Rhomboid. In contrast to more general structural roles previously suggested for these proteins, we infer that a major function of the abundant HMGB proteins in Drosophila is to participate in Brahma-dependent chromatin remodeling at a specific subset of Brahma-dependent promoters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The HMG-domain protein BAP111 is important for the function of the BRM chromatin-remodeling complex in vivo.

The Drosophila trithorax group gene brahma (brm) encodes the ATPase subunit of a SWI/SNF-like chromatin-remodeling complex. A key question about chromatin-remodeling complexes is how they interact with DNA, particularly in the large genomes of higher eukaryotes. Here, we report the characterization of BAP111, a BRM-associated protein that contains a high mobility group (HMG) domain predicted to...

متن کامل

Genetic screens for enhancers of brahma reveal functional interactions between the BRM chromatin-remodeling complex and the delta-notch signal transduction pathway in Drosophila.

The Drosophila trithorax group gene brahma (brm) encodes the ATPase subunit of a 2-MDa chromatin-remodeling complex. brm was identified in a screen for transcriptional activators of homeotic genes and subsequently shown to play a global role in transcription by RNA polymerase II. To gain insight into the targeting, function, and regulation of the BRM complex, we screened for mutations that gene...

متن کامل

The Drosophila trithorax group proteins BRM, ASH1 and ASH2 are subunits of distinct protein complexes.

The trithorax group gene brahma (brm) encodes an activator of Drosophila homeotic genes that functions as the ATPase subunit of a large protein complex. To determine if BRM physically interacts with other trithorax group proteins, we purified the BRM complex from Drosophila embryos and analyzed its subunit composition. The BRM complex contains at least seven major polypeptides. Surprisingly, th...

متن کامل

The Brm-HDAC3-Erm repressor complex suppresses dedifferentiation in Drosophila type II neuroblast lineages

The control of self-renewal and differentiation of neural stem and progenitor cells is a crucial issue in stem cell and cancer biology. Drosophila type II neuroblast lineages are prone to developing impaired neuroblast homeostasis if the limited self-renewing potential of intermediate neural progenitors (INPs) is unrestrained. Here, we demonstrate that Drosophila SWI/SNF chromatin remodeling Br...

متن کامل

Akirin Links Twist-Regulated Transcription with the Brahma Chromatin Remodeling Complex during Embryogenesis

The activities of developmentally critical transcription factors are regulated via interactions with cofactors. Such interactions influence transcription factor activity either directly through protein-protein interactions or indirectly by altering the local chromatin environment. Using a yeast double-interaction screen, we identified a highly conserved nuclear protein, Akirin, as a novel cofac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 172 2  شماره 

صفحات  -

تاریخ انتشار 2006