Exploiting symmetry in copositive programs via semidefinite hierarchies
نویسندگان
چکیده
Copositive programming is a relative young field which has evolved into a highly active research area in mathematical optimization. An important line of research is to use semidefinite programming to approximate conic programming over the copositive cone. Two major drawbacks of this approach are the rapid growth in size of the resulting semidefinite programs, and the lack of information about the quality of the semidefinite programming approximations. These drawbacks are an inevitable consequence of the intractability of the generic problems that such approaches attempt to solve. To address such drawbacks, we develop customized solution approaches for highly symmetric copositive programs, which arise naturally in several contexts. For instance, symmetry properties of combinatorial problems are typically inherited when they are addressed via copositive programming. As a result we are able to compute new bounds for crossing number instances in complete bipartite graphs.
منابع مشابه
Symmetric Tensor Approximation Hierarchies for the Completely Positive Cone
In this paper we construct two approximation hierarchies for the completely positive cone based on symmetric tensors. We show that one hierarchy corresponds to dual cones of a known polyhedral approximation hierarchy for the copositive cone, and the other hierarchy corresponds to dual cones of a known semidefinite approximation hierarchy for the copositive cone. As an application, we consider a...
متن کاملCopositive Programming – a Survey
Copositive programming is a relatively young field in mathematical optimization. It can be seen as a generalization of semidefinite programming, since it means optimizing over the cone of so called copositive matrices. Like semidefinite programming, it has proved particularly useful in combinatorial and quadratic optimization. The purpose of this survey is to introduce the field to interested r...
متن کاملCopositive programming: separation and relaxations
A large portion of research in science and engineering, as well as in business, concerns one similar problem: how to make things “better”? Once properly modeled (often a highly nontrivial task), this kind of question can be approached via a mathematical optimization problem. An optimal solution to a mathematical optimization problem, when interpreted properly, might correspond to new knowledge,...
متن کاملApproximation of the Stability Number of a Graph via Copositive Programming
Lovász and Schrijver showed how to formulate increasingly tight approximations of the stable set polytope of a graph by solving semidefinite programs (SDP’s) of increasing size (lift-and-project method). In this talk we present a similar idea. We show how the stability number can be computed as the solution of a conic linear program (LP) over the cone of copositive matrices. Subsequently, we sh...
متن کاملPositive polynomials on unbounded equality-constrained domains
Certificates of non-negativity are fundamental tools in optimization. A “certificate” is generally understood as an expression that makes the non-negativity of the function in question evident. Some classical certificates of non-negativity are Farkas Lemma and the S-lemma. The lift-and-project procedure can be seen as a certificate of non-negativity for affine functions over the union of two po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 151 شماره
صفحات -
تاریخ انتشار 2015