Modeling sprint cycling using field-derived parameters and forward integration.

نویسندگان

  • James C Martin
  • A Scott Gardner
  • Martin Barras
  • David T Martin
چکیده

UNLABELLED We previously reported that a mathematical model could accurately predict steady-state road-cycling power when all the model parameters were known. Application of that model to competitive cycling has been limited by the need to obtain accurate parameter values, the non-steady-state nature of many cycling events, and because the validity of the model at maximal power has not been established. PURPOSE We determined whether modeling parameters could be accurately determined during field trials and whether the model could accurately predict cycling speed during maximal acceleration using forward integration. METHODS First, we quantified aerodynamic drag area of six cyclists using both wind tunnel and field trials allowing for these two techniques to be compared. Next, we determined the aerodynamic drag area of three world-class sprint cyclists using the field-test protocol. Track cyclists also performed maximal standing-start time trials, during which we recorded power and speed. Finally, we used forward integration to predict cycling speed from power-time data recorded during the maximal trials allowing us to compare predicted speed with measured speed. RESULTS Field-based values of aerodynamic drag area (0.258 +/- 0.006 m) did not differ (P = 0.53) from those measured in a wind tunnel (0.261 +/- 0.006 m2). Forward integration modeling accurately predicted cycling speed (y = x, r2 = 0.989) over the duration of the standing-start sprints. CONCLUSIONS Field-derived values for aerodynamic drag area can be equivalent to values derived from wind tunnel testing, and these values can be used to accurately predict speed even during maximal-power acceleration by world-class sprint cyclists. This model could be useful for assessing aerodynamic issues and for predicting how subtle changes in riding position, mass, or power output will influence cycling speed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding sprint-cycling performance: the integration of muscle power, resistance, and modeling.

Sprint-cycling performance is paramount to competitive success in over half the world-championship and Olympic races in the sport of cycling. This review examines the current knowledge behind the interaction of propulsive and resistive forces that determine sprint performance. Because of recent innovation in field power-measuring devices, actual data from both elite track- and road-cycling spri...

متن کامل

2D DC resistivity forward modeling based on the integral equation method and a comparison with the RES2DMOD results

A 2D forward modeling code for DC resistivity is developed based on the integral equation (IE) method. Here, a linear relation between model parameters and apparent resistivity values is proposed, although the resistivity modeling is generally a nonlinear problem. Two synthetic cases are considered for the numerical calculations and the results derived from IE code are compared with the RES2DMO...

متن کامل

Influence of noncircular chainring on male physiological parameters in hand cycling.

The purpose of this study was to examine the influence of a noncircular chainring (NCC) compared with a conventional circular chainring (CC) on hand cycling performance. Eleven nondisabled male participants with no hand cycling experience initially completed an incremental exercise test. Afterward, the participants completed two 20 s sprint tests, followed by a 20 min endurance test and then an...

متن کامل

Numerical Simulation and Parametric Reduced Order Modeling of the Natural Convection of Water-Copper Nanofluid

In this article, a coupled computational framework is presented for the numerical simulation of mass transfer under the effects of natural convection phenomena in a field contains water-copper Nano-fluid. This CFD model is build up based on accurate algorithms for spatial derivatives and time integration. The spatial derivatives have been calculated using first order upwind and second order cen...

متن کامل

Comparison of Biomechanical Criteria in Cycling Maximal Effort Test

The purpose of this paper was to evaluate a new set of biomechanical parameters for performance assessment in laboratory sprint cycling. Two groups of seven cyclists, one at elite level, the other at regional level, performed sprint tests in seated and standing positions against 0.8 N/kg resistive loads on the T1670 Basic ergo-trainer (Tacx, Netherlands). A classic racing bicycle was equipped w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medicine and science in sports and exercise

دوره 38 3  شماره 

صفحات  -

تاریخ انتشار 2006