Analysis of Pocket Double Gate Tunnel Fet for Low Stand by Power Logic Circuits
نویسندگان
چکیده
For low power circuits downscaling of MOSFET has a major issue of scaling of voltage which has ceased after 1V. This paper highlights comparative study and analysis of pocket double gate tunnel FET (DGTFET) with MOSFET for low standby power logic circuits. The leakage current of pocket DGTFET and MOSFET have been studied and the analysis results shows that the pocket DGTFET gives the lower leakage current than the MOSFET. Further a pocket DGTFET inverter circuit is design in 32 nm technology node at VDD =0.6 V. The pocket DGTFET inverter shows the significant improvement on the leakage power than multi-threshold CMOS (MTCMOS) inverter. The leakage power of pocket DGFET and MTCMOS inverter are 0.116 pW and 1.83 pW respectively. It is found that, the pocket DGTFET can replace the MOSFET for low standby power circuits.
منابع مشابه
High-Speed Penternary Inverter Gate Using GNRFET
This paper introduces a new design of penternary inverter gate based on graphene nanoribbon field effect transistor (GNRFET). The penternary logic is one of Multiple-valued logic (MVL) circuits which are the best substitute for binary logic because of its low power-delay product (PDP) resulting from reduced complexity of interconnects and chip area. GNRFET is preferred over Si-MOSFET for circui...
متن کاملDouble-Gate Tunnel FET With High-κ Gate Dielectric
In this paper, we propose and validate a novel design for a double-gate tunnel fi eld-effect transistor (DG Tunnel FET), for which the simulations show significant improvements compared with single-gate devices using an SiO2 gate dielectric. For the fi rst time, DG Tunnel FET devices, which are using a high-κ gate dielectric, are explored using realistic design parameters, showing an ON-current...
متن کاملOptimization of Quantum Cellular Automata Circuits by Genetic Algorithm
Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...
متن کاملA universal method for designing low-power carbon nanotube FET-based multiple-valued logic circuits
This study presents new low-power multiple-valued logic (MVL) circuits for nanoelectronics. These carbon nanotube field effect transistor (FET) (CNTFET)-based MVL circuits are designed based on the unique characteristics of the CNTFET device such as the capability of setting the desired threshold voltages by adopting correct diameters for the nanotubes as well as the same carrier mobility for t...
متن کاملHetero double gate-dielectric Tunnel FET with record high ION /IOFF ratio
To manage the increasing static leakage in low power applications and reduced Ion/Ioff due to aggressive scaling of MOS transistors, Tunnel FET (TFET) devices are considered as the most promising candidates because of their excellent immunity against such important short channel effects. Solutions for leakage reduction as well as improving on current of the device are sought at the device desig...
متن کامل