Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3.

نویسندگان

  • Fuye Yang
  • Arthur C K Chung
  • Xiao Ru Huang
  • Hui Yao Lan
چکیده

Connective tissue growth factor (CTGF) plays a critical role in angiotensin II (Ang II)-mediated hypertensive nephropathy. The present study investigated the mechanisms and specific roles of individual Smads in Ang II-induced CTGF and collagen I expression in tubular epithelial cells with deletion of transforming growth factor (TGF)-beta1, overexpression of Smad7, or knockdown of Smad2 or Smad3. We found that Ang II-induced tubular CTGF and collagen I mRNA and protein expressions were regulated positively by phosphorylated Smad2/3 but negatively by Smad7 because overexpression of Smad7-abolished Ang II-induced Smad2/3 phosphorylation and upregulation of CTGF and collagen I in vitro and in a rat model of remnant kidney disease. Additional studies revealed that, in addition to a late (24-hour) TGF-beta-dependent Smad2/3 activation, Ang II also induced a rapid activation of Smad2/3 at 15 minutes and expression of CTGF and collagen I in tubular epithelial cells lacking the TGF-beta gene, which was blocked by the addition of an Ang II type 1 receptor antagonist (losartan) and inhibitors to extracellular signal-regulated kinase 1/2 (PD98059) and p38 (SB203580) but not by inhibitors to Ang II type 2 receptor (PD123319) or c-Jun N-terminal kinase (SP600125), demonstrating a TGF-beta-independent, Ang II type 1 receptor-mediated extracellular signal-regulated kinase/p38 mitogen-activated protein kinase cross-talk pathway in Ang II-mediated CTGF and collagen I expression. Importantly, the ability of knockdown of Smad3, but not Smad2, to inhibit Ang II-induced CTGF and collagen I expression further revealed an essential role for Smad3 in Ang II-mediated renal fibrosis. In conclusion, Ang II induces tubular CTGF expression and renal fibrosis via the TGF-beta-dependent and -independent Smad3 signaling pathways, suggesting that targeting Smad3 may have therapeutic potential for hypertensive nephropathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential role of Smad3 in angiotensin II-induced vascular fibrosis.

Angiotensin II (Ang II) plays a pivotal role in vascular fibrosis, which leads to serious complications in hypertension and diabetes. However, the underlying signaling mechanisms are largely unclear. In hypertensive patients, we found that arteriosclerosis was associated with the activation of Smad2/3. This observation was further investigated in vitro by stimulating mouse primary aorta vascula...

متن کامل

Smad3 mediates cardiac inflammation and fibrosis in angiotensin II-induced hypertensive cardiac remodeling.

Although Smad3 is a key mediator of fibrosis, the functional role of Smad3 in hypertensive cardiovascular disease remains unclear. The present study tested the hypothesis that angiotensin II may activate the transforming growth factor-beta/Smad3 pathway to mediate hypertensive cardiac remodeling in Smad3 knockout (KO) and wild-type mice by subcutaneous angiotensin II infusion and in the primary...

متن کامل

Transforming growth factor-beta and fibrosis.

Transforming growth factor-beta (TGF-beta), a prototype of multifunctional cytokine, is a key regulator of extracellular matrix (ECM) assembly and remodeling. Specifically, TGF-beta isoforms have the ability to induce the expression of ECM proteins in mesenchymal cells, and to stimulate the production of protease inhibitors that prevent enzymatic breakdown of the ECM. Elevated TGF-beta expressi...

متن کامل

Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism.

BACKGROUND Angiotensin II (Ang II) participates in vascular fibrosis. Transforming growth factor-beta (TGF-beta) is considered the most important fibrotic factor, and Smad proteins are essential components of the TGF-beta signaling system. Our aim was to investigate whether Ang II activates the Smad pathway in vascular cells and its potential role in fibrosis, evaluating connective tissue growt...

متن کامل

Smad3 signaling critically regulates fibroblast phenotype and function in healing myocardial infarction.

RATIONALE Cardiac fibroblasts are key effector cells in the pathogenesis of cardiac fibrosis. Transforming growth factor (TGF)-beta/Smad3 signaling is activated in the border zone of healing infarcts and induces fibrotic remodeling of the infarcted ventricle contributing to the development of diastolic dysfunction. OBJECTIVE The present study explores the mechanisms responsible for the fibrog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 54 4  شماره 

صفحات  -

تاریخ انتشار 2009