Small proper double blocking sets in Galois planes of prime order

نویسندگان

  • Petr Lisonek
  • Joanna Wallis
چکیده

A proper double blocking set in PG(2, p) is a set B of points such that 2 |B ∩ l| (p + 1) − 2 for each line l. The smallest known example of a proper double blocking set in PG(2, p) for large primes p is the disjoint union of two projective triangles of side (p+ 3)/2; the size of this set is 3p+ 3. For each prime p 11 such that p ≡ 3 (mod 4) we construct a proper double blocking set with 3p + 1 points, and for each prime p 7 we construct a proper double blocking set with 3p + 2 points. © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blocking and Double Blocking Sets in Finite Planes

In this paper, by using properties of Baer subplanes, we describe the construction of a minimal blocking set in the Hall plane of order q2 of size q2 + 2q + 2 admitting ∗This author has been supported as a postdoctoral fellow of the Research Foundation Flanders (Belgium) (FWO). †This author was supported by a Visiting Professor grant of the Special Research Fund Ghent University (BOF project nu...

متن کامل

Upper Bounds on the Covering Number of Galois-Planes with Small Order

Our paper deals with a problem of P. Erd} os' related to the covering number of blocking sets of nite projective planes. An integer linear programming (ILP) formulation of Erd} os' problem is introduced for projective planes of given orders. The mathematical programming based approach for this problem is new in the area of nite projective planes. Since the ILP problem is NP-hard and may involve...

متن کامل

Two Remarks on Blocking Sets and Nuclei in Planes of Prime Order

In this paper we characterize a sporadic non-Rédei type blocking set of PG(2, 7) having minimum cardinality, and derive an upper bound for the number of nuclei of sets in PG(2, q) having less than q + 1 points. Our methods involve polynomials over finite fields, and work mainly for planes of prime order.

متن کامل

On multiple blocking sets in Galois planes

This article continues the study of multiple blocking sets in PG(2, q). In [3], using lacunary polynomials, it was proven that t-fold blocking sets of PG(2, q), q square, t < q1/4/2, of size smaller than t(q + 1) + cqq 2/3, with cq = 2 −1/3 when q is a power of 2 or 3 and cq = 1 otherwise, contain the union of t pairwise disjoint Baer subplanes when t ≥ 2, or a line or a Baer subplane when t = ...

متن کامل

Sets of Type (d1, d2) in projective Hjelmslev planes over Galois Rings

In this paper we construct sets of type (d1, d2) in the projective Hjelmslev plane. For computational purposes we restrict ourself to planes over Zps with p a prime and s > 1, but the method is described over general Galois rings. The existence of sets of type (d1, d2) is equivalent to the existence of a solution of a Diophantine system of linear equations. To construct these sets we prescribe ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 308  شماره 

صفحات  -

تاریخ انتشار 2008