Electrophysiological identification of tonic and phasic neurons in sensory dorsal root ganglion and their distinct implications in inflammatory pain.

نویسندگان

  • Y-Q Yu
  • X-F Chen
  • Y Yang
  • F Yang
  • J Chen
چکیده

In the mammalian autonomic nervous system, tonic and phasic neurons can be differentiated on firing patterns in response to long depolarizing current pulse. However, the similar firing patterns in the somatic primary sensory neurons and their functional significance are not well investigated. Here, we identified two types of neurons innervating somatic sensory in rat dorsal root ganglia (DRG). Tonic neurons fire action potentials (APs) in an intensity-dependent manner, whereas phasic neurons typically generate only one AP firing at the onset of stimulation regardless of intensity. Combining retrograde labeling of somatic DRG neurons with fluorescent tracer DiI, we further find that these neurons demonstrate distinct changes under inflammatory pain states induced by complete Freund's adjuvant (CFA) or bee venom toxin melittin. In tonic neurons, CFA and melittin treatments significantly decrease rheobase and AP durations (depolarization and repolarization), enhance amplitudes of overshoot and afterhyperpolarization (AHP), and increase the number of evoked action potentials. In phasic neurons, however, the same inflammation treatments cause fewer changes in these electrophysiological parameters except for the increased overshoot and decreased AP durations. In the present study, we find that tonic neurons are more hyperexcitable than phasic neurons after peripheral noxious inflammatory stimulation. The results indicate the distinct contributions of two types of DRG neurons in inflammatory pain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat

Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...

متن کامل

The Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats

Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...

متن کامل

اثر محافظت عصبی اسید اوریک در پیشگیری از آپوپتوز نورون‌های گانگلیون ریشه پشتی اعصاب نخاعی

Background and Objective: The neuroprotective effect of uric acid as a natural antioxidant on neurodegenerative diseases has been proposed repeatedly, but its antiapoptotic effect on spinal neurons has not been examined yet. Due to the critical role of sensory neurons in the improvement of functional outcome in neuroprotective strategies, the antiapoptotic effect of uric acid on dorsal root gan...

متن کامل

THE EFFECT OF LOCUS CERULEUS LESIONING ON TONIC AND PHASIC PAIN

Bulbospinal noradrenergic pathways are shown to have an important role in descending inhibition of pain sensation. Locus ceruleus (LC), as a rich noradrenergic nucleus in the brain stem which has projections into the dorsal horn of the spinal cord, was evaluated for antinociceptive activity by using tonic and phasic pain models in the rat. LC-lesioned rats demonstrated moderate increase in ...

متن کامل

Do distinct populations of dorsal root ganglion neurons account for the sensory peptidergic innervation of the kidney?

Peptidergic afferent renal nerves (PARN) have been linked to kidney damage in hypertension and nephritis. Neither the receptors nor the signals controlling local release of neurokinines [calcitonin gene-related peptide (CGRP) and substance P (SP)] and signal transmission to the brain are well-understood. We tested the hypothesis that PARN, compared with nonrenal afferents (Non-RN), are more sen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological research

دوره 63 6  شماره 

صفحات  -

تاریخ انتشار 2014