Asymptotics of Ehrhart Δ - Vectors

نویسندگان

  • MATTHIAS BECK
  • ALAN STAPLEDON
چکیده

Let N be a lattice and P ⊂ N ⊗ Z R a lattice polytope, i.e., the convex hull of finitely many points in N. Ehrhart's theorem asserts that the lattice-point counting function f P (m) := # (mP ∩ N) is a polynomial, and thus 1 + P m≥1 f P (m) t m = δ P (t) (1−t) d+1 for some polynomial δ P (t), the δ-vector of P. Motivated by the Knudsen–Mumford–Waterman Conjecture about the existence of unimodular triangulations for all sufficiently large dilates of P and a recent theorem of Athanasiadis–Hibi–Stanley asserting that such triangulations imply certain inequalities for the δ-vector, we study δ nP (t) = δ 0 (n) + δ 1 (n) t + · · · + δ d (n) t d as n grows. We prove that for sufficiently large n (with a bound depending only on dim P), δ 0 (n) < δ d (n) < δ 1 (n) < · · · < δ i (n) < δ d−i (n) < δ i+1 (n) < · · · < δ ⌊ d+1 2 ⌋ (n); in particular, δ nP (t) is unimodal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Δ-vectors I

We introduce the notion of a weighted δ-vector of a lattice polytope. Although the definition is motivated by motivic integration, we study weighted δ-vectors from a combinatorial perspective. We present a version of Ehrhart Reciprocity and prove a change of variables formula. We deduce a new geometric interpretation of the coefficients of the Ehrhart δ-vector. More specifically, they are sums ...

متن کامل

Ehrhart polynomials of convex polytopes with small volumes

Let P ⊂ R be an integral convex polytope of dimension d and δ(P) = (δ0, δ1, . . . , δd) be its δ-vector. By using the known inequalities on δ-vectors, we classify the possible δ-vectors of convex polytopes of dimension d with P

متن کامل

Weighted Ehrhart Theory and Orbifold Cohomology

We introduce the notion of a weighted δ-vector of a lattice polytope. Although the definition is motivated by motivic integration, we study weighted δ-vectors from a combinatorial perspective. We present a version of Ehrhart Reciprocity and prove a change of variables formula. We deduce a new geometric interpretation of the coefficients of the Ehrhart δ-vector. More specifically, they are sums ...

متن کامل

Ehrhart Polynomials of Integral Simplices with Prime Volumes

For an integral convex polytope P ⊂ R of dimension d, we call δ(P) = (δ0, δ1, . . . , δd) the δ-vector of P and vol(P) = ∑d i=0 δi its normalized volume. In this paper, we will establish the new equalities and inequalities on δ-vectors for integral simplices whose normalized volumes are prime. Moreover, by using those, we will classify all the possible δ-vectors of integral simplices with norma...

متن کامل

Classification of Ehrhart polynomials of integral simplices

Let δ(P) = (δ0, δ1, . . . , δd) be the δ-vector of an integral convex polytope P of dimension d. First, by using two well-known inequalities on δ-vectors, we classify the possible δ-vectors with ∑d i=0 δi ≤ 3. Moreover, by means of Hermite normal forms of square matrices, we also classify the possible δ-vectors with ∑d i=0 δi = 4. In addition, for ∑d i=0 δi ≥ 5, we characterize the δ-vectors of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008