Lipschitz Continuity of Optimal Controls for State Constrained Problems
نویسندگان
چکیده
This paper provides new conditions under which optimal controls are Lipschitz continuous for dynamic optimization problems with functional inequality constraints, a control constraint expressed in terms of a general closed convex set and a coercive cost function. It is shown that the linear independence condition on active state constraints, present in the earlier literature, can be replaced by a less restrictive, positive linear independence condition that requires linear independence merely with respect to nonnegative weighting parameters. Smoothness conditions on the data, imposed in earlier work, are also relaxed. The new conditions for Lipschitz continuity of optimal controls are obtained by a detailed analysis of the implications of first order optimality conditions in the form of a nonsmooth maximum principle.
منابع مشابه
A new approach to Lipschitz continuity in state constrained optimal control 1
For a linear-quadratic state constrained optimal control problem, it is proved in [11] that under an independence condition for the active constraints, the optimal control is Lipschitz continuous. We now give a new proof of this result based on an analysis of the Euler discretization given in [9]. There we exploit the Lipschitz continuity of the control to estimate the error in the Euler discre...
متن کاملRegularity Properties of Optimal Controls for Problems with Time-varying State and Control Constraints
In this paper we report new results on the regularity of optimal controls for dynamic optimization problems with functional inequality state constraints, a convex time-dependent control constraint and a coercive cost function. Recently it has been shown that the linear independence condition on active state constraints, present in the earlier literature, can be replaced by a less restrictive, p...
متن کاملOptimal control of state constrained integral equations
We consider the optimal control problem of a class of integral equations with initial and final state constraints, as well as running state coinstraints. We prove Pontryagin’s principle, and study the continuity of the optimal control and of the measure associated with first order state constraints. We also establish the Lipschitz continuity of these two functions of time for problems with only...
متن کاملNecessary Conditions for Optimal Control Problems with State Constraints
Necessary conditions of optimality are derived for optimal control problems with pathwise state constraints, in which the dynamic constraint is modelled as a differential inclusion. The novel feature of the conditions is the unrestrictive nature of the hypotheses under which these conditions are shown to be valid. An Euler Lagrange type condition is obtained for problems where the multifunction...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 42 شماره
صفحات -
تاریخ انتشار 2003