1 1 M ay 2 00 6 Linear transformations that are tridiagonal with respect to both eigenbases of a Leonard pair
نویسندگان
چکیده
Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A∗ : V → V that satisfy (i) and (ii) below: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A∗ is diagonal. (ii) There exists a basis for V with respect to which the matrix representing A∗ is irreducible tridiagonal and the matrix representing A is diagonal. We call such a pair a Leonard pair on V . Let X denote the set of linear transformations X : V → V such that the matrix representing X with respect to the basis (i) is tridiagonal and the matrix representing X with respect to the basis (ii) is tridiagonal. We show that X is spanned by
منابع مشابه
ul 2 00 3 Two linear transformations each tridiagonal with respect to an eigenbasis of the other ; an overview
Let K denote a field and let V denote a vector space over K with finite positive dimension. We consider an ordered pair of linear transformations A : V → V and A∗ : V → V that satisfy conditions (i), (ii) below. (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A∗ is diagonal. (ii) There exists a basis for V wit...
متن کامل2 7 M ay 2 00 7 Transition maps between the 24 bases for a Leonard pair
Let V denote a vector space with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V that satisfy (i) and (ii) below: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal. (ii) There exists a basis for V with respect to which the matrix representing A is irr...
متن کاملA ] 2 6 N ov 2 00 5 The determinant of AA ∗ − A ∗ A for a Leonard pair A , A ∗
Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A∗ : V → V that satisfy (i), (ii) below: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A∗ is diagonal. (ii) There exists a basis for V with respect to which ...
متن کاملar X iv : m at h / 03 06 30 1 v 1 [ m at h . Q A ] 1 9 Ju n 20 03 Leonard pairs and the q - Racah polynomials ∗
Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V which satisfy the following two conditions: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal. (ii) There exists a basis for V with respe...
متن کامل2 00 8 Leonard pairs and the q - Racah polynomials ∗
Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V that satisfy the following two conditions: (i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal. (ii) There exists a basis for V with respec...
متن کامل