Tunable topological electronic structures in Sb ( 111 ) bilayers : A first - principles study
نویسنده
چکیده
Submitted for the MAR13 Meeting of The American Physical Society Tunable topological electronic structures in Sb(111) bilayers: A first-principles study FENG-CHUAN CHUANG, CHIA-HSIU HSU, CHIA-YU CHEN, ZHI-QUAN HUANG, Natl. Sun Yat-sen U., Taiwan, VIDVUDS OZOLINS, UCLA, HSIN LIN, ARUN BANSIL, Northeastern U. — Electronic structure and band topology of a single Sb(111) bilayer in the buckled honeycomb configuration are investigated using first-principles calculations with the inclusion of spin-orbit coupling. While a trivial band insulator is predicted for the free-standing thin film, a band inversion at the Brillouin zone center can be induced by tensile strain, resulting in a topological insulator with a nontrivial topological invariant Z2 = 1. Our study points at the possibility of realizing the quantum spin Hall state for an Sb(111) single bilayer on a suitable substrate. Moreover, the presence of buckling provides an advantage in controlling the band gap through an out-of-plane external electric field, which breaks the inversion symmetry and lifts the spin degeneracy. A topological phase transition driven by gating is demonstrated, and six spin-polarized Dirac cones are found at the critical point. With a tunable gap and reversible spin polarization, Sb thin films are promising candidates for spintronic applications. Feng-Chuan Chuang Natl. Sun Yat-sen U., Taiwan Date submitted: 08 Nov 2012 Electronic form version 1.4
منابع مشابه
Strain driven topological phase transitions in atomically thin films of group IV and V elements in the honeycomb structures
We have investigated topological electronic properties of freestanding bilayers of group IV (C, Si, Ge, Sn, and, Pb) and V (As, Sb, and, Bi) elements of the periodic table in the buckled and planar honeycomb structures under isotropic strain using first-principles calculations. Our focus is on mapping strain driven phase diagrams and identifying topological phase transitions therein as a pathwa...
متن کاملTopological and electronic transitions in a Sb(111) nanofilm: The interplay between quantum confinement and surface effect
When the dimension of a solid structure is reduced, there will be two emerging effects, quantum confinement and surface effect, which dominate at nanoscale. Based on first-principles calculations, we demonstrate that due to an intriguing interplay between these two dominating effects, the topological and electronic (topoelectronic) properties of Sb (111) nanofilms undergo a series of transition...
متن کاملPredicted Growth of Two-Dimensional Topological Insulator Thin Films of III-V Compounds on Si(111) Substrate
We have carried out systematic first-principles electronic structure computations of growth of ultrathin films of compounds of group III (B, Al, In, Ga, and Tl) with group V (N, P, As, Sb, and Bi) elements on Si(111) substrate, including effects of hydrogenation. Two bilayers (BLs) of AlBi, InBi, GaBi, TlAs, and TlSb are found to support a topological phase over a wide range of strains, in addi...
متن کاملTwo-dimensional Topological Crystalline Insulator Phase in Sb/Bi Planar Honeycomb with Tunable Dirac Gap
We predict planar Sb/Bi honeycomb to harbor a two-dimensional (2D) topological crystalline insulator (TCI) phase based on first-principles computations. Although buckled Sb and Bi honeycombs support 2D topological insulator (TI) phases, their structure becomes planar under tensile strain. The planar Sb/Bi honeycomb structure restores the mirror symmetry, and is shown to exhibit non-zero mirror ...
متن کاملEngineering Electronic Structure of a Two-Dimensional Topological Insulator Bi(111) Bilayer on Sb Nanofilms by Quantum Confinement Effect.
We report on the fabrication of a two-dimensional topological insulator Bi(111) bilayer on Sb nanofilms via a sequential molecular beam epitaxy growth technique. Our angle-resolved photoemission measurements demonstrate the evolution of the electronic band structure of the heterostructure as a function of the film thickness and reveal the existence of a two-dimensional spinful massless electron...
متن کامل