On symmetries and invariant solutions of a coupled KdV system with variable coefficients

نویسندگان

  • K. Singh
  • R. K. Gupta
چکیده

We investigate symmetries and reductions of a coupled KdV system with variable coefficients. The infinitesimals of the group of transformations which leaves the KdV system invariant and the admissible forms of the coefficients are obtained using the generalized symmetry method based on the Fréchet derivative of the differential operators. An optimal system of conjugacy inequivalent subgroups is then identified with the adjoint action of the symmetry group. For each basic vector field in the optimal system, the KdV system is reduced to a system of ordinary differential equations, which is further studied with the aim of deriving certain exact solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

Lie symmetry analysis for Kawahara-KdV equations

We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.

متن کامل

New explicit solutions of the fifth-order KdV equation with variable coefficients

By means of the modified CK’s direct method, we give out the relationship between variable coefficients of the fifth-order KdV equation and the corresponding constant coefficient ones. At the same time, we have studied the generalized fifth-order KdV equation with constants coefficients using the Lie symmetry group methods. By applying the nonclassical symmetry method we found that the analyzed...

متن کامل

DYNAMIC BEHAVIOR OF TRAVELING WAVE SOLUTIONS FOR A CLASS FOR THE TIME-SPACE COUPLED FRACTIONAL kdV SYSTEM WITH TIME-DEPENDENT COEFFICIENTS

In this paper, a simplified bilinear method combined with a fractional transform has been used to obtain a new multiple soliton solutions for the Fractional coupled fractional kdV equations with variable coefficients. These systems appear in biology, engineering, mechanics, complex physics phenomena economics, signal image processing, notably control theory, groundwater problems and chemistry. ...

متن کامل

Order reduction and μ-conservation law for the non-isospectral KdV type equation a with variable-coefficients

The goal of this paper is to calculate of order reduction of the KdV typeequation and the non-isospectral KdV type equation using the μ-symmetrymethod. Moreover we obtain μ-conservation law of the non-isospectral KdVtype equation using the variational problem method.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2005  شماره 

صفحات  -

تاریخ انتشار 2005