The ATLAS Fast Monte Carlo Production Chain Project
نویسنده
چکیده
During the last years ATLAS has successfully deployed a new integrated simulation framework (ISF) which allows a flexible mixture of full and fast detector simulation techniques within the processing of one event. The thereby achieved possible speed-up in detector simulation of up to a factor 100 makes subsequent digitization and reconstruction the dominant contributions to the Monte Carlo (MC) production CPU cost. The slowest components of both digitization and reconstruction are inside the Inner Detector due to the complex signal modeling needed in the emulation of the detector readout and in reconstruction due to the combinatorial nature of the problem to solve, respectively. Alternative fast approaches have been developed for these components: for the silicon based detectors a simpler geometrical clustering approach has been deployed replacing the charge drift emulation in the standard digitization modules, which achieves a very high accuracy in describing the standard output. For the Inner Detector track reconstruction, a Monte Carlo generator information based trajectory building has been deployed with the aim of bypassing the CPU intensive pattern recognition. Together with the ISF all components have been integrated into a new fast MC production chain, aiming to produce fast MC simulated data with sufficient agreement with fully simulated and reconstructed data at a processing time of seconds per event, compared to several minutes for full simulation.
منابع مشابه
Search for 4th family quarks with the ATLAS detector
The pair production of heavy fourth-generation quarks, which are predicted under the hypothesis of flavor democracy, is studied using tree-level Monte Carlo generators and fast detector simulation. Two heavy-quark mass values, 500 and 750GeV, are considered with the assumption that the fourth family mixes primarily with the two light families. It is shown that a clear signature will be observed...
متن کاملProjecting Markov Random Field Parameters for Fast Mixing
Markov chain Monte Carlo (MCMC) algorithms are simple and extremely powerful techniques to sample from almost arbitrary distributions. The flaw in practice is that it can take a large and/or unknown amount of time to converge to the stationary distribution. This paper gives sufficient conditions to guarantee that univariate Gibbs sampling on Markov Random Fields (MRFs) will be fast mixing, in a...
متن کاملATLAS Monte Carlo Production System
The ATLAS Monte Carlo production system tool attempts to provide the end-user physicist the ability to perform on-demand Monte Carlo production for his/her specific needs. The aim is to shield the physicist from the underlying complexity and to present him/her with a consistent, flexible and intuitive interface. The tool will harness the power and capacity of grid computing allowing the physici...
متن کاملProject Time and Cost Forecasting using Monte Carlo simulation and Artificial Neural Networks
The aim of this study is to present a new method to predict project time and cost under uncertainty. Assuming that what happens in projects implementation which is expressed in the form of Earned Value Management (EVM) indicators is primarily related to the nature of randomness or unreliability, in this study, by using Monte Carlo simulation, and assuming a specific distribution for the time an...
متن کاملEvaluating Performance of Algorithms in Lung IMRT: A Comparison of Monte Carlo, Pencil Beam, Superposition, Fast Superposition and Convolution Algorithms
Background: Inclusion of inhomogeneity corrections in intensity modulated small fields always makes conformal irradiation of lung tumor very complicated in accurate dose delivery.Objective: In the present study, the performance of five algorithms via Monte Carlo, Pencil Beam, Convolution, Fast Superposition and Superposition were evaluated in lung cancer Intensity Modulated Radiotherapy plannin...
متن کامل