Hypertriglyceridemia in lecithin-cholesterol acyltransferase-deficient mice is associated with hepatic overproduction of triglycerides, increased lipogenesis, and improved glucose tolerance.
نویسندگان
چکیده
Lecithin-cholesterol acyltransferase deficiency is frequently associated with hypertriglyceridemia (HTG) in animal models and humans. We investigated the mechanism of HTG in the ldlr-/- x lcat-/- (double knockout (dko)) mice using the ldlr-/- x lcat+/+ (knock-out (ko)) littermates as control. Mean fasting triglyceride (TG) levels in the dko mice were elevated 1.75-fold compared with their controls (p < 0.002). Both the very low density lipoprotein and the low density lipoprotein/intermediate density lipoprotein fractions separated by fast protein liquid chromatography were TG-enriched in the dko mice. In vitro lipolysis assay revealed that the dko mouse very low density lipoprotein (d < 1.019 g/ml) fraction separated by ultracentrifugation was a more efficient substrate for lipolysis by exogenous bovine lipoprotein lipase. Post-heparin lipoprotein lipase activity was reduced by 61% in the dko mice. Hepatic TG production rate, determined after intravenous Triton WR1339 injection, was increased 8-fold in the dko mice. Hepatic mRNA levels of sterol regulatory element binding protein-1 (srebp-1) and its target genes acetyl-CoA carboxylase-1 (acc-1), fatty acid synthase (fas), and stearoyl-CoA desaturase-1 (scd-1) were significantly elevated in the dko mice compared with the ko control. The hepatic mRNA levels of LXRalpha (lxralpha) and its target genes including angiopoietin-like protein 3 (angptl-3) in the dko mice were unchanged. Fasting glucose and insulin levels were reduced by 31 and 42%, respectively in the dko mice, in conjunction with a 49% reduction in hepatic pepck-1 mRNA (p = 0.014). Both the HTG and the improved fasting glucose phenotype seen in the dko mice are at least in part attributable to an up-regulation of the hepatic srebp-1c gene.
منابع مشابه
Coordinated alteration of hepatic gene expression in fatty acid and triglyceride synthesis in LCAT-null mice is associated with altered PUFA metabolism.
Complete lecithin:cholesterol acyltransferase (LCAT) deficiency is associated with fasting hypertriglyceridemia (HTG). We recently reported that, in ldlr(-/-)xlcat(-/-) mice, fasting HTG is associated with hepatic triglyceride overproduction in association with an upregulation of the hepatic srebp1 gene and altered expression of its target genes in lipogenesis and gluconeogenesis. We further in...
متن کاملApoA-II expression in CETP transgenic mice increases VLDL production and impairs VLDL clearance.
Apolipoprotein (apo)A-II is a major high density lipoprotein (HDL) protein; however, its role in lipoprotein metabolism is largely unknown. Transgenic (Tg) mice that overexpress human apoA-II present functional lecithin: cholesterol acyltransferase deficiency, HDL deficiency, hypertriglyceridemia and, when fed an atherogenic diet, increased non-HDL cholesterol and increased susceptibility to at...
متن کاملAssociation of Lecithin Cholesterol Acyltransferase rs5923 Polymorphism in Iranian Individuals with Extremely Low High-Density Lipoprotein Cholesterol: Tehran Lipid and Glucose Study
Background: The serum concentration of high-density lipoprotein cholesterol (HDL-C) is one of the important heritable risk factors for cardiovascular disease and is a target for therapeutic intervention. In this study, we aimed to evaluate the effects of lecithin cholesterol acyltransferase (LCAT) gene polymorphism rs5923 on LCAT enzyme activity and serum HDL-C concentration. Methods: The study...
متن کاملAcceleration of biliary cholesterol secretion restores glycemic control and alleviates hypertriglyceridemia in obese db/db mice.
OBJECTIVE Recent studies support a role for cholesterol in the development of obesity and nonalcoholic fatty liver disease. Mice lacking the ABCG5 ABCG8 (G5G8) sterol transporter have reduced biliary cholesterol secretion and are more susceptible to steatosis, hepatic insulin resistance, and loss of glycemic control when challenged with a high-fat diet. We hypothesized that accelerating G5G8-me...
متن کاملLCAT-null mice develop improved hepatic insulin sensitivity through altered regulation of transcription factors and suppressors of cytokine signaling.
We previously reported that LCAT-deficient mice develop not only low HDL-cholesterol but also hypertriglyceridemia, hepatic triglyceride (TG) overproduction, and, unexpectedly, improved hepatic insulin sensitivity and reduced hepatic TG content. Here, we examined the mechanistic links underlying this apparent paradox. The LDL receptor-deficient (Ldlr)(-/-)xLcat(-/-) mouse model and age- and sex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 9 شماره
صفحات -
تاریخ انتشار 2004