Ways of Proof Theory
نویسندگان
چکیده
We suggest a new basic framework for the Weyl-Feferman predicativist program by constructing a formal predicative set theory PZF which resembles ZF . The basic idea is that the predicatively acceptable instances of the comprehension schema are those which determine the collections they define in an absolute way, independent of the extension of the “surrounding universe”. This idea is implemented using syntactic safety relations between formulas and sets of variables. These safety relations generalize both the notion of domain-independence from database theory, and Gödel notion of absoluteness from set theory. The language of PZF is typefree, and it reflects real mathematical practice in making an extensive use of statically defined abstract set terms. Another important feature of PZF is that its underlying logic is ancestral logic (i.e. the extension of FOL with a transitive closure operation).
منابع مشابه
A short proof of the maximum conjecture in CR dimension one
In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...
متن کاملA New Proof of FDR Control Based on Forward Filtration
For multiple testing problems, Benjamini and Hochberg (1995) proposed the false discovery rate (FDR) as an alternative to the family-wise error rate (FWER). Since then, researchers have provided many proofs to control the FDR under different assumptions. Storey et al. (2004) showed that the rejection threshold of a BH step-up procedure is a stopping time with respect to the reverse filtration g...
متن کاملFuzzy Linear Programming and its Application for a Constructive Proof of a Fuzzy Version of Farkas Lemma
The main aim of this paper is to deal with a fuzzy version of Farkas lemma involving trapezoidal fuzzy numbers. In turns to that the fuzzy linear programming and duality theory on these problems can be used to provide a constructive proof for Farkas lemma. Keywords Farkas Lemma, Fuzzy Linear Programming, Duality, Ranking Functions.
متن کاملStructured Theories in LCF
Abs t rac t : An extension to the Edinburgh LCF interactive theorem-proving system is described which provides new ways of constructing theories, drawing upon ideas from the Clear specification language. A new theory can be built from an existing theory in two new ways: by renaming its types and constants, or by abstraction (forgetting some types and constants and perhaps renaming the rest]. A ...
متن کاملFrobenius kernel and Wedderburn's little theorem
We give a new proof of the well known Wedderburn's little theorem (1905) that a finite division ring is commutative. We apply the concept of Frobenius kernel in Frobenius representation theorem in finite group theory to build a proof.
متن کاملSome results on the block numerical range
The main results of this paper are generalizations of classical results from the numerical range to the block numerical range. A different and simpler proof for the Perron-Frobenius theory on the block numerical range of an irreducible nonnegative matrix is given. In addition, the Wielandt's lemma and the Ky Fan's theorem on the block numerical range are extended.
متن کامل