Experimental Study on Dehumidification Performance of Supersonic Nozzle
نویسنده
چکیده
Supersonic nozzles are commonly used to purify natural gas in gas processing technology. As an innovated technology, it is employed to overcome the deficit of the traditional method, related to gas dynamics, thermodynamics and fluid dynamics theory. An indoor test rig is built to study the dehumidification process of moisture fluid. Humid air was chosen for the study. The working fluid was circulating in an open loop, which had provision for filtering, metering, and humidifying. A stainless steel supersonic separator is constructed together with the C-D nozzle system. The result shows that dehumidification enhances as NPR increases. This is due to the high intensity in the turbulence caused by the shock formation in the divergent section. Such disturbance strengthens the centrifugal force, pushing more particles toward the near-wall region. In return return, the pressure recovery factor, defined as the ratio of the outlet static pressure of the fluid to its inlet value, decreases with NPR. Keywords—Supersonic nozzle, dehumidification, particle separation, geometry.
منابع مشابه
Investigating the Effects of Inlet Conditions and Nozzle Geometry on the Performance of Supersonic Separator Used for Natural Gas Dehumidification
Supersonic separators have found extensive applications in dehumidification of natural gases since 2003. Unlike previous studies, which have investigated the inlet conditions and nozzle geometry of supersonic separators for pure fluids, the present study employed a combination of momentum, heat, and mass transfer equations along with Virial equation of state (EOS) to inspect the effect of inlet...
متن کاملA Theoretical Mass Transfer Approach for Prediction of Droplets Growth Inside Supersonic Laval Nozzle
Proper estimation of droplet growth rate plays a crucial role on appropriate prediction of supersonic separators performance for separation of fine droplets from a gas stream. Up to now, all available researches employ empirical or semi-empirical correlations to define the relationship between droplet growth rate (dr/dt) and other operating variables such as temperatures (T and TL), Pressure (P...
متن کاملON OPTIMAL NOZZLE SHAPES OF GAS-DYNAMIC LASERS
Pontryagin's principle is used to study the shape of the supersonic part of the nozzle of a carbon dioxide gas-dynamic laser whose gain is maximal. The exact shape is obtained for the uncoupled approximation of Anderson's bimodal model. In this case, if sharp corners are allowed, the ceiling of the supersonic part consists of a slant rectangular sheet followed by a horizontal one; otherwise...
متن کاملCFD Simulations of Swirling Effects on the Performance of the Supersonic Nozzle for Micro-particle Delivery
A high-speed gas flow, generated by a miniature supersonic nozzle for microparticle acceleration, is investigated. In medical application, the powder formulation of drugs can be delivered into human skin or mucosal tissue for the treatment of a range of diseases. One of the main concerns for designing and evaluating such system is ensuing that microparticles are delivered into human skin with a...
متن کاملThe Effects of Pressure Difference in Nozzle’s two Phase Flow on the Quality of Exhaust Mixture
In the most application of nozzle with gas-liquid two-phase flow, the quality of mixture in exhaust of nozzle is the most important parameter as well as the flow velocity. On the other hand, in some industrial application, such as water injection in forced induction (turbocharged or supercharged) internal combustion engine the spray quality is the main goal of designing. In this case and for im...
متن کامل