Low-Cost Temperature Logger for a Polymerase Chain Reaction Thermal Cycler

نویسندگان

  • Chan-Young Park
  • Jae-Hyeon Cho
  • Yu-Seop Kim
  • Hye-Jeong Song
  • Jong-Dae Kim
چکیده

Polymerase chain reaction (PCR) is a method of amplifying DNA which is normally carried out with a thermal cycler. To obtain more accurate and reliable PCR results, the temperature change within the chamber of the thermal cycler needs to be verified and calibrated regularly. Commercially available temperature loggers commonly used for temperature verification tests usually require a graphical user interface (GUI) attached to the logger for convenience and straightforward understanding of the device. In this study, a host-local architecture for the temperature logger that significantly reduces the development time and cost is proposed. Employing standard computing devices as the host gives better development environment and user-friendly GUI. This paper presents the hardware and software design of the host-local temperature logger, and demonstrates the use of the local temperature logger connected to a personal computer with a Windows operating system. The probe design, thermistor resistance measurement, temperature filtering, and temperature calibration is described in detail. The thermistor self-heating problem was investigated in particular to determine the reference resistor that was serially connected to the thermistor. The temperature accuracy and temporal precision of the proposed system was 0.1 K.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings

BACKGROUND Many modern molecular diagnostic assays targeting nucleic acids are typically confined to developed countries or to the national reference laboratories of developing-world countries. The ability to make technologies for the rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a revolutionary step forward in global health. Many molecular a...

متن کامل

Convectively driven polymerase chain reaction thermal cycler.

We have fabricated a low-cost disposable polymerase chain reaction thermal chamber that uses buoyancy forces to move the sample solution between the different temperatures necessary for amplification. Three-dimensional, unsteady finite element modeling and a simpler 1-D steady-state model are used together with digital particle image velocimetry data to characterize the flow within the device. ...

متن کامل

Rapid microfluidic thermal cycler for polymerase chain reaction nucleic acid amplification

Polymerase chain reaction (PCR) is widely used in biochemical analysis to amplify DNA and RNA in vitro. The PCR process is highly temperature sensitive, and thermal management has an important role in PCR operation in reaching the required temperature set points at each step of the process. The goal of this research is to achieve a thermal technique to rapidly increase the heating/cooling therm...

متن کامل

A large volume, portable, real-time PCR reactor.

A point-of-care, diagnostic system incorporating a portable thermal cycler and a compact fluorescent detector for real-time, polymerase chain reaction (PCR) on disposable, plastic microfluidic reactors with relatively large reaction volume (ranging from 10 µL to 100 µL) is described. To maintain temperature uniformity and a relatively fast temperature ramping rate, the system utilizes double-si...

متن کامل

Rapid and highly sensitive detection by a real-time polymerase chain reaction using a chip coated with its reagents.

On-site detection by flow-through polymerase chain reaction (PCR) microfluidic systems for rapid and highly sensitive analysis, are significantly desired for bioanalytical and medical research. The conventional continuous-flow PCR chips realized rapid detection, but their sensitivity was very low (10(6) to 10(8) copies μL(-1)). We improved this drawback by coating the chip with a PCR reagents m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016