Electronic property modification of single-walled carbon nanotubes by encapsulation of sulfur-terminated graphene nanoribbons.

نویسندگان

  • Andrew Pollack
  • Sufian Alnemrat
  • Thomas W Chamberlain
  • Andrei N Khlobystov
  • Joseph P Hooper
  • Sebastian Osswald
چکیده

The use of carbon nanotubes (CNTs) as cylindrical reactor vessels has become a viable means for synthesizing graphene nanoribbons (GNRs). While previous studies demonstrated that the size and edge structure of the as-produced GNRs are strongly dependent on the diameter of the tubes and the nature of the precursor, the atomic interactions between GNRs and surrounding CNTs and their effect on the electronic properties of the overall system are not well understood. Here, it is shown that the functional terminations of the GNR edges can have a strong influence on the electronic structure of the system. Analysis of SWCNTs before and after the insertion of sulfur-terminated GNRs suggests a metallization of the majority of semiconducting SWCNTs. This is indicated by changes in the radial breathing modes and the D and G band Raman features, as well as UV-vis-NIR absorption spectra. The variation in resonance conditions of the nanotubes following GNR insertion make direct (n,m) assignment by Raman spectroscopy difficult. Thus, density functional theory calculations of representative GNR/SWCNT systems are performed. The results confirm significant changes in the band structure, including the development of a metallic state in the semiconducting SWCNTs due to sulfur/tube interactions. The GNR-induced metallization of semiconducting SWCNTs may offer a means of controlling the electronic properties of bulk CNT samples and eliminate the need for a physical separation of semiconducting and metallic tubes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube.

The ability to tune the properties of graphene nanoribbons (GNRs) through modification of the nanoribbon's width and edge structure widens the potential applications of graphene in electronic devices. Although assembly of GNRs has been recently possible, current methods suffer from limited control of their atomic structure, or require the careful organization of precursors on atomically flat su...

متن کامل

Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.

Carbon nanotubes (CNTs) act as efficient nanoreactors, templating the assembly of sulfur-terminated graphene nanoribbons (S-GNRs) with different sizes, structures, and conformations. Spontaneous formation of nanoribbons from small sulfur-containing molecules is efficiently triggered by heat treatment or by an 80 keV electron beam. S-GNRs form readily in CNTs with internal diameters between 1 an...

متن کامل

Functionalization of the Single-walled Carbon Nanotubes by Sulfur Dioxide and Electric Field Effect, a Theoretical Study on the Mechanism

In this study, kinetics and mechanism of the sulfur dioxide adsorption on the single-walled carbon nanotubes (CNT) are investigated. Three single-walled carbon nanotubes, including the armchair (6,6), chiral (6,5) and zigzag (6,0) CNTs were chosen as the models and the different orientations of SO2 molecule relative to the CNT axis were considered. The B3LYP functional within the 6-3...

متن کامل

Energy dispersion in graphene and carbon nanotubes and molecular encapsulation in nanotubes

Density-functional calculations of electronic and vibrational dispersion energies for pristine graphite monolayer graphene and single-walled carbon nanotubes SWCNTs are presented. Optimized parameters for nonlocal norm-preserving pseudopotentials which replace the potential field due to core electrons are given. Comparison with observations, where available, is made. The effect of encapsulation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Small

دوره 10 24  شماره 

صفحات  -

تاریخ انتشار 2014