Preferential Scattering by Interfacial Charged Defects for Enhanced Thermoelectric Performance in Few-layered n-type Bi2Te3
نویسندگان
چکیده
Over the past two decades several nano-structuring methods have helped improve the figure of merit (ZT) in the state-of-the art bulk thermoelectric materials. While these methods could enhance the thermoelectric performance of p-type Bi2Te3, it was frustrating to researchers that they proved ineffective for n-type Bi2Te3 due to the inevitable deterioration of its thermoelectric properties in the basal plane. Here, we describe a novel chemical-exfoliation spark-plasma-sintering (CE-SPS) nano-structuring process, which transforms the microstructure of n-type Bi2Te3 in an extraordinary manner without compromising its basal plane properties. The CE-SPS processing leads to preferential scattering of electrons at charged grain boundaries, and thereby increases the electrical conductivity despite the presence of numerous grain boundaries, and mitigates the bipolar effect via band occupancy optimization leading to an upshift (by ~ 100 K) and stabilization of the ZT peak over a broad temperature range of ~ 150 K.
منابع مشابه
Twin-driven thermoelectric figure-of-merit enhancement of Bi2Te3 nanowires.
Thermoelectric figure-of-merits (ZT) are enhanced or degraded by crystal defects such as twins and excess atoms that are correlated with thermal conductivity (k) and carrier concentration (n). For Bi2Te3, it is unclear whether the crystal defects can enhance ZT without a degradation in the thermopower factor. In the present study, n-type Bi2Te3 nanowires (NWs) are electrochemically synthesized ...
متن کاملرشد بلور (Bi2Te3)0.96(Bi2Se3)0.04 به روش رشد ناحیهای و بررسی تغییرات شیمیایی ترکیب در راستای رشد
The (Bi2Te3)0.96(Bi2Se3)0.04 is an n-type thermoelectric semiconductor for using in thermoelectric cooling systems. Single crystal of this composition was grown by Zone Melting Method and thermoelectric power (α 2 σ) along the crystal growth where α is the Seebeck coefficient and σ is the electrical conductivity was measured. In this measurement a gradient along length of the prepared crystalli...
متن کاملThe effect of temperature on thermoelectric properties of n-type Bi2Te3 nanowire/graphene layer-by-layer hybrid composites.
The thermoelectric properties of Bi2Te3 nanowire/graphene composites prepared at different sintering temperatures have been investigated. The as-synthesized ultrathin Bi2Te3 nanowires are uniformly distributed between the graphene layers, leading to the formation of Bi2Te3 nanowire/graphene layer-by-layer hybrid structures. The electrical conductivity of the as-sintered composites increases dra...
متن کاملThermoelectric performance enhancement in n-type Bi2(TeSe)3 alloys owing to nanoscale inhomogeneity combined with a spark plasma-textured microstructure
Bi2Te3 is a good thermoelectric compound that can be adjusted to por n-type with corresponding substitutions; however, less progress has been achieved for the property enhancement of n-type Bi2(TeSe)3 compared with p-type (BiSb)2Te3. Textured n-type Bi2(TeSe)3 with an enhanced thermoelectric performance has been developed in this study by combining texturing with in situ nanostructuring effects...
متن کاملبررسی تغییر ساختـار بلورین (Bi2Te3)0.25 (Sb2Te3)0.75 با درصـد وزنـی Te افـزوده به وسیلـهی AFM, EBSD و XRDو ارتقای عدد شایستگی بلور
(Bi2Te3)0.25(Sb2Te3)0.75 solid solution is a p type thermoelectric compound with optimum efficiency among the (Bi2Te3)x (Sb2Te3)1-x compounds with variable x. Increment of Bi2Te3 segment in the Bi-Sb-Te system decrease in hole concentration, which result in carriers transport tuning, an increment of Seebeck coefficient and decrement of electrical and thermal conductivities. An excess of Telluri...
متن کامل