Individual Discriminative Face Recognition Models Based on Subsets of Features
نویسندگان
چکیده
The accuracy of data classification methods depends considerably on the data representation and on the selected features. In this work, the elastic net model selection is used to identify meaningful and important features in face recognition. Modelling the characteristics which distinguish one person from another using only subsets of features will both decrease the computational cost and increase the generalization capacity of the face recognition algorithm. Moreover, identifying which are the features that better discriminate between persons will also provide a deeper understanding of the face recognition problem. The elastic net model is able to select a subset of features with low computational effort compared to other state-of-the-art feature selection methods. Furthermore, the fact that the number of features usually is larger than the number of images in the data base makes feature selection techniques such as forward selection or lasso regression become inadequate. In the experimental section, the performance of the elastic net model is compared with geometrical and color based algorithms widely used in face recognition such as Procrustes nearest neighbor, Eigenfaces, or Fisherfaces. Results show that the elastic net is capable of selecting a set of discriminative features and hereby obtain high classification rates.
منابع مشابه
A New Strategy for Improving Feature Sets in a Discrete Hmm-based Handwriting Recognition System
In this paper we introduce a new strategy for improving a discrete HMM-based handwriting recognition system, by integrating several information sources from specialized feature sets. For a given system, the basic idea is to keep the most discriminative features, and to replace the others with new ones obtained from new feature spaces. After evaluating the individual discriminative power of each...
متن کاملImproving Face Recognition by Exploring Local Features with Visual Attention
Over the past several years, the performance of stateof-the-art face recognition systems has been significantly improved, due in a large part to the increasing amount of available face datasets and the proliferation of deep neural networks. This rapid increase in performance has left existing popular performance evaluation protocols, such as standard LFW, nearly saturated and has motivated the ...
متن کاملA comprehensive experimental comparison of the aggregation techniques for face recognition
In face recognition, one of the most important problems to tackle is a large amount of data and the redundancy of information contained in facial images. There are numerous approaches attempting to reduce this redundancy. One of them is information aggregation based on the results of classifiers built on selected facial areas being the most salient regions from the point of view of classificati...
متن کاملArcFace: Additive Angular Margin Loss for Deep Face Recognition
Convolutional neural networks have significantly boosted the performance of face recognition in recent years due to its high capacity in learning discriminative features. To enhance the discriminative power of the Softmax loss, multiplicative angular margin [23] and additive cosine margin [44, 43] incorporate angular margin and cosine margin into the loss functions, respectively. In this paper,...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کامل