Structural context shapes the aquaporin selectivity filter.

نویسندگان

  • David F Savage
  • Joseph D O'Connell
  • Larry J W Miercke
  • Janet Finer-Moore
  • Robert M Stroud
چکیده

Aquaporins are transmembrane channels that facilitate the permeation of water and small, uncharged amphipathic molecules across cellular membranes. One distinct aquaporin subfamily contains pure water channels, whereas a second subfamily contains channels that conduct small alditols such as glycerol, in addition to water. Distinction between these substrates is central to aquaporin function, though the contributions of protein structural motifs required for selectivity are not yet fully characterized. To address this question, we sequentially engineered three signature amino acids of the glycerol-conducting subfamily into the Escherichia coli water channel aquaporin Z (AqpZ). Functional analysis of these mutant channels showed a decrease in water permeability but not the expected increase in glycerol conduction. Using X-ray crystallography, we determined the atomic resolution structures of the mutant channels. The structures revealed a channel surprisingly similar in size to the wild-type AqpZ pore. Comparison with measured rates of transport showed that, as the size of the selectivity filter region of the channel approaches that of water, channel hydrophilicity dominated water conduction energetics. In contrast, the major determinant of selectivity for larger amphipathic molecules such as glycerol was channel cross-section size. Finally, we find that, although the selectivity filter region is indeed central to substrate transport, other structural elements that do not directly interact with the substrates, such as the loop connecting helices M6 and M7, and the C loop between helices C4 and C5, play an essential role in facilitating selectivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter.

Major intrinsic proteins (MIPs) are a family of membrane channels that facilitate the bidirectional transport of water and small uncharged solutes such as glycerol. The 35 full-length members of the MIP family in Arabidopsis are segregated into four structurally homologous subfamilies: plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26-like intrinsic memb...

متن کامل

Crystal Structure of an Ammonia-Permeable Aquaporin.

Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin ...

متن کامل

Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF.

"Real time" molecular dynamics simulations of water permeation through human aquaporin-1 (AQP1) and the bacterial glycerol facilitator GlpF are presented. We obtained time-resolved, atomic-resolution models of the permeation mechanism across these highly selective membrane channels. Both proteins act as two-stage filters: Conserved fingerprint [asparagine-proline-alanine (NPA)] motifs form a se...

متن کامل

Npgrj_nsmb_1431 619..625

The 2.05-Å resolution structure of the aquaglyceroporin from the malarial parasite Plasmodium falciparum (PfAQP), a protein important in the parasite’s life cycle, has been solved. The structure provides key evidence for the basis of water versus glycerol selectivity in aquaporin family members. Unlike its closest homolog of known structure, GlpF, the channel conducts both glycerol and water at...

متن کامل

Identification of key residues involved in Si transport by the aquaglyceroporins

We recently demonstrated that the aquaglyceroporins (AQGPs) could act as potent transporters for orthosilicic acid (H4SiO4). Although interesting, this finding raised the question of whether water and H4SiO4, the transportable form of Si, permeate AQGPs by interacting with the same region of the pore, especially in view of the difference in molecular radius between the two substrates. Here, our...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 40  شماره 

صفحات  -

تاریخ انتشار 2010