A Grassmann-Rayleigh Quotient Iteration for Computing Invariant Subspaces

نویسندگان

  • Pierre-Antoine Absil
  • Robert E. Mahony
  • Rodolphe Sepulchre
  • Paul Van Dooren
چکیده

The classical Rayleigh quotient iteration (RQI) allows one to compute a one-dimensional invariant subspace of a symmetric matrix A. Here we propose a generalization of the RQI which computes a p-dimensional invariant subspace of A. Cubic convergence is preserved and the cost per iteration is low compared to other methods proposed in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M ar 2 00 8 Two - sided Grassmann - Rayleigh quotient iteration ∗

The two-sided Rayleigh quotient iteration proposed by Ostrowski computes a pair of corresponding left-right eigenvectors of a matrix C. We propose a Grassmannian version of this iteration, i.e., its iterates are pairs of p-dimensional subspaces instead of one-dimensional subspaces in the classical case. The new iteration generically converges locally cubically to the pairs of left-right p-dimen...

متن کامل

Two-sided Grassmann-Rayleigh quotient iteration

The two-sided Rayleigh quotient iteration proposed by Ostrowski computes a pair of corresponding left-right eigenvectors of a matrix C. We propose a Grassmannian version of this iteration, i.e., its iterates are pairs of p-dimensional subspaces instead of one-dimensional subspaces in the classical case. The new iteration generically converges locally cubically to the pairs of left-right p-dimen...

متن کامل

A Grassmann-Rayleigh Quotient Iteration for Dimensionality Reduction in ICA

We derive a Grassmann-Rayleigh Quotient Iteration for the computation of the best rank-(R1, R2, R3) approximation of higher-order tensors. We present some variants that allow for a very efficient estimation of the signal subspace in ICA schemes without prewhitening.

متن کامل

On Proximity of Rayleigh Quotients for Different Vectors and Ritz Values Generated by Different Trial Subspaces ?

The Rayleigh quotient is unarguably the most important function used in the analysis and computation of eigenvalues of symmetric matrices. The Rayleigh-Ritz method finds the stationary values of the Rayleigh quotient, called Ritz values, on a given trial subspace as optimal, in some sense, approximations to eigenvalues. In the present paper, we derive upper bounds for proximity of the Ritz valu...

متن کامل

The preconditioned inverse iteration for hierarchical matrices

The preconditioned inverse iteration [Ney01a] is an efficient method to compute the smallest eigenpair of a symmetric positive definite matrix M . Here we use this method to find the smallest eigenvalues of a hierarchical matrix [Hac99]. The storage complexity of the datasparse H-matrices is almost linear. We use H-arithmetic to precondition with an approximate inverse of M or an approximate Ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Review

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2002